80 Years of Computer History Lorrin R. Garson

Lifetime Learning Institute of Northern Virginia Summer 2019

Lecture 1 of 3
August 22, 2019

Course Outline

-Why 80 years?

- Events presented chronologically
- Prominent contributing individuals
- A little rudimentary math
- Relevant contemporaneous historical events
- Often "the first" is difficult to determine
- Conflicting dates are sometimes reported
- My apologies for the inevitable errors!

Before Computers - There Were Computers ㅇ. \& active hypertext link

Before Computers - There Were Computers ${ }^{\text {은 }}$

Harvard's Computers (~1919) ©

Before Computers - There Were Computers

Human Computers at NASA © 1950s \& 60s

What is a Computer? (As We Know It Today)

An electronic device
for storing and processing data,
typically in binary form,
according to instructions given to it in a variable program

Types of Computers

- PCs
- Tablets
- Smartphones
- Hand-held

Calculators

- Minicomputers
- Workstations
- Servers
- Mainframes
- Supercomputers
- Internet of Things (loT)

PCs

- Used by individuals
- \$200 to \$3,000
- Used for:
- E-mail
- "Surfing" the Web
- Office automation (Word, PowerPoint, Excel, etc.)
- Photo/video editing
- Gaming

Minicomputers

- Midrange machines

PC < Mini < Mainframe

- Multiuser
- \$20,000 to \$100,000
- Attached to other devices
- CAT scanners
- X-ray refractormeters
- Mass spectrometers
- Replaced by workstations

Workstations

- "Super" PCs
- \$5,000 to \$20,000
- Individual users
- Networked
- Used for:
- CAD/CAM applications
- Video editing
- Music production
- Data analysis

Servers

- Provide storage and services for other networked computers
- \$400 to \$4,000
- Types:
- Application servers
- Database servers
- Printer servers
- DNS servers

Mainframes*

- Businesses
- Banking
- Insurance
- Health care
- Inventory control
- E-commerce
- Governments
- Military
- IRS
- Social Security
* "Big Iron"
- Hot swapping of components
- Backward compatible software
- Backward compatible softw
- High transaction throughput
- Large storage capacity \$75,000 to millions
- High availability \& redundancy

Supercomputers

- Extreme numeric performance
- \$100 to $\$ 250$ million
- 1000s CPUs

IBM's "Intrepid" 165,000 CPUs

- Many/most use Linux
- Used for:
- Weather forecasting
- Molecular modeling
- Weapons design
- Quantum mechanics
- Petroleum exploration

Software

- A collection of instructions that tell a computer what to do
- Types
- System, including operating systems
- Applications (apps), aka programs
- Utilities
- Approximately 500-2,000 active programming languages

Top Programming Languages

Tiobe Index - December 2017

Software (cont.)

- In the BASIC language (1964)

10 PRINT "Hello World!" \leftarrow source code

The result? Hello World!

Software

- In the "C" language (1972)
/* A "C "program to print Hello World! */
\#include <stdio.h>
int main()
\{
printf ("Hello World!!n"); return 0;
\}

The result? Hello World!

Software (cont.)

- In the C++ language (1979)

\#include <iostream>

int main ()
\{
std::cout << "Hello World";
\}

The result? Hello World

Software (cont.)

- In the Java language (1995)

public class Hello \{
public static void main (String [] args) \{
System.out.println ("Hello World");
\}
\}

The result? Hello World

Software (cont.)

- In the FORTRAN language (1957)

PROGRAM HELLOWORLD 10 FORMAT (1X, 11HHELLO WORLD) WRITE $(6,10)$ END

The result? Hello World

Software (cont.)

- In the COBOL language (1959)

IDENTIFICATION DIVISION.
PROGRAM-ID. Hello.
ENVIRONMENT DIVISION.
DATA DIVISION. PROCEDURE DIVISION.

Display 'Hello World!'. STOP RUN.

The result? Hello World!

Software (cont.)

- IBM 360/370/390 BAL (Basic Assembler Language, 1964)

```
// EXEC ASSEMBLY
    START
MAIN BALR 2,0
    USING *,2
    OPEN PRINT
    MVC BUF,HW
    PUT PRINT
    CLOSE PRINT
    EOJ
HW DC CL132 'HELLO WORLD'
BUF DS CL132
PRINT DTFPR IOAREA1=BUF, DEVADDR=SYSLST,BLKSIZE=132,
*
                    DEVICE=3203,CONTROL=YES,PRINTOV=YES
    END MAIN
/*
// EXEC LNKEDT
// EXEC
/*
/&
    The result? Hello World
```


Let's Talk Numbers

Math phobes?

Woof! Hang loose...

Babylonian Numbers

"Modern Babylonian Numbers"

- Time
- 60 seconds/minute
- 60 minutes/hour
- Mathematics
-360° in a circle
- trigonometric functions
- Geography/Navigation
- $38^{\circ} 52^{\prime} 38^{\prime \prime} \mathrm{N} \quad 77^{\circ} 17^{\prime} 20^{\prime \prime} \mathrm{W}$

$1,2,3,4,5,6,7,8,9 \ldots$

What about ten? What about zero?

Basic Modern Arithmetic

Symbols: $0,1,2,3,4,5,6,7,8,9$
999 Nine hundred and ninety-nine
444
nine hundreds PLUS nine tens PLUS nine "things"

Basic Modern Arithmetic (cont.)

Symbols: $0,1,2,3,4,5,6,7,8,9$
101_{10} One hundred and one
One hundred PLUS zero tens PLUS 1 "thing"

$$
\begin{array}{ll}
10^{2} & 10^{1} \\
\uparrow \text { one (100s) }
\end{array} \text { "things" }
$$

\uparrow zero (10s)
$\uparrow 1$ count of things
$\ldots 10^{1000} \ldots . . .10^{4} \quad 10^{3} \quad 10^{2} \quad 10^{1} \quad$ " $0 \rightarrow 9$ things"

1101110111101100010111
 1110110110101110001011 0101111011011111010111 0110111110001110100010 0001011110100010111011 1011000101110100010111 010010000101001011011 1011100010110111000101

Basic Computer Arithmetic

Symbols: 0 and 1 (binary)

101_{2} Equal to five in decimal $(4+0+1=5)$ \uparrow a"1"
\uparrow Zero twos
\uparrow One four

$$
\begin{array}{llllllll}
\ldots 2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 0 \text { or } 1
\end{array}
$$

Decimal $128 \quad 64 \begin{array}{llllll}32 & 16 & 8 & 4 & 2 & 0\end{array}$ or 1 $11111111_{2}=128+64+32+16+8+4+2+1=255_{10}$ Base 60: ...604 $60^{3} \quad 60^{2} \quad 60^{1} 1 \rightarrow 60$ Base 12: ... $12^{4} \quad 12^{3} \quad 12^{2} \quad 12^{1} \quad 1 \rightarrow 12{ }_{34}$

Letter ASCII Code
Binary
Letter
ASCII Code
Binary

American	a	097	01100001	A	065	01000001
Standard	b	098	01100010	B	066	01000010
Stan	c	099	01100011	C	067	01000011
Code for	d	100	01100100	D	068	01000100
Information	e	101	01100101	E	069	01000101
Interchange	g	102	01100110	F	070	01000110
	h	103	01100111	G	071	01000111
	104	01101000	H	072	01001000	

ASCII character " 9 " = 00111001

 Number $9=00001001$ulvuiuli

n	110	01101110	N	078	01001110
o	111	01101111	O	079	01001111
p	112	01110000	P	080	01010000
q	113	01110001	Q	081	01010001
r	114	01110010	R	082	01010010
s	115	01110011	S	083	01010011
t	116	01110100	T	084	01010100
u	117	01110101	U	085	01010101
v	118	01110110	V	086	01010110
w	119	01110111	W	087	01010111
x	120	01111000	X	088	01011000
y	121	01111001	Y	089	010110035
z	122	01111010	Z	090	01011010

Foundations of the Modern Computer

Alois Senefelder ㅂ
 (1771-1834)

Alois Senefelder

- Actor, playwright, engineer, inventor
- Invented stone printing (Steindruck) 1796 - to print his plays
- Lithography (from the French)
- 1818—published "A Complete Course of Lithography"
- currently available on Amazon.com (free)

Joseph Marie Jacquard © (1752-1834)

Science Museum London

Tapestry woven on Jacquard loom \rightarrow

The Jacquard Loom

- Invented in 1804
- Punched cards activate hooks and rods on a loom to create intricate patterns
- Revolutionized weaving
- greatly reduced labor costs
- reduced price of intricate cloth
- caused considerable civil unrest due to job loss

Museum of Science and Industry
Manchester, England

Charles Babbage (1791-1871)으

	0	1	2	3	4	5	6	7	8	9	Dillereever								
												23			5		7	8	
10	1000	0043	0036	0128	0170	0212	0253	0234	053	0174		81		172	212				
11	Q414	0453	0492	0631	ask	0s07	0545	O932	979	075				151	192				
12	0792	0828	0864	6699	ar4	Oit9	1004	108	1072	1106	3	71		141					
13	1139	1173	1236	1239	1271	1303	1335	1367	1199	1430	3	6		131	161				
14	1451	1492	1523	1553	1584	1614	1644	167)	1703	1732	1	6		1215	15				
15	1761	1760		184	1875	1903	1931	1959	1987	2014	3	6		111	141				
$\begin{aligned} & 16 \\ & 17 \end{aligned}$	2041 2104	2008	2095	2122 2185	2148	215	2201	2227	2253	2279	3			111	131				
$\begin{aligned} & 17 \\ & \text { is } \end{aligned}$	2104 2553	${ }_{2}^{23} 5$		2385 26.24				2450	104	2529				1012	121	15		19	
19	2751	2810	28	2158				,45											
20	3010	3032		3075				160											
21	1222	1243	326]	3284	3354	3324	1345	3365	3385	3404	2	4		810	10			18	18
22	3424	344	3464	3481	02	312	341	3560	3579	1898	2	4		810	10			15	
23	3617		2055	264	52	31													
24	3802				14	1		Q		31									
25	397																		
25	4190	4166	$418)$	4200	4216	4232	4249	4265	4281	4295	2	3			810			13	
27	4314	4330	4345	4362	4378	4393	4809	4425	4440	4456	2	3			8			13	
28	4472	4287	4502	4518	4513	4548	4564	4579	4504	4009	2	3			8				
23	4624	4699	4654	4569	4653	4698	4113	4781	472	4757	t	3						12	
30	4771	4785	4800	4814				4871	4386	4900		3			7			II	
318	4914	4928	4952	4955 5092	4969	4983	4997 5132	3011	5024 $\$ 159$	S038	1								
313	S051	5055 5198	5079	5092 5224	5106 9237 356	$\$ 119$ $\$ 250$	5132	5145 5270	5159 5289	5112 5002 508	1	3		5	?			11	
34	5315	5328	5395	5353	\$356	\$378	5391	5403	\$416	5428	i	3			0			10	
15	5441	5453	5465	5475	5410	\$502	5314	5927	5519	S531	1	2			6			10	
34	556]	5515	5537	5590	5611	5623	5635	5647	5653	5610	1	2			6	,		10	11
37	5662	5694	3705	5717	5729	5740	5752	5761	5775	5786	1	2		5	5		8	*	10
38	3798	5989	5821	5832	5343	5855	5856	5877	5 seg	5899	1	2		5	6	7	8	9	16
39	5911	5922	$5 \mathrm{Sa3}$	58.4	s95s	\$966	5977	5084	3099	6010	1	2		4	5		3	9	10
45	6021	6031	6042	(605]	COHA	(a)5	6093	6095	6197	6117	1	\pm			5		8	\%	
41	6128	6188	5148	0100	5170	6130	6191	6201	6212	6232	t	$?$			5			5	9
42	6232	6243	6253	6263	6274	6234	6894	5104	6314	6725	1	2		4	5		7	8	9
43	6315	+345	6155	6)65	6175	6385	6395	6405	6415	6425	1	2		4	5			8	9
44	6435	644	6554	6464	6434	6484	609)	6501	6513	6522	1	2		4	5		3	8	\%
45	6532	6542	6551	6361	6571	6550	6590	6599	6609	6518	1	2			5		1	8	9
																6		1	8
47	¢721	6730	6739	6749	6198	6767		5785	6194	6803	1	2		4	5			7	8
48	6812	6421	6830	6859	6843			6875	6884	6893	1	2		4	4			7	8
49	E902	6911	6920	6928	4937		6295	4954	6972	6981	1	2		4	4	5	6	7	8
50	5060	698	1007	3016	7004			3080	3059	765		2	,		4	,		7	8
$\$ 2$	7160	7168			7193			7218	7226	7235		2		3	4	5		7	
53	7243	7231			7275	2284		7300	7308	3316	1	2		3	4	5		6	7
54	7326	7312	730	7348	7158	7164	7372	1390	1888	J194		2			4		6	6	
	0	1	2	3	4	5	6	7	8	9	1	2			56		7	8	

The Difference Engine-1821

- Created values for:
- logarithms
- trigonometric functions, etc.
- using the method of finite differences in evaluating polynomials
- Sample polynomial: $f(x)=2 x^{4}-5 x^{3}+2 x^{2}+17$
- Could compute 31-digit values for polynomials with terms up to X^{7}
- 1827—published accurate table of logarithms for 1 to 108,000

Replica Babbage's Difference Engine \#1

The Analytical Engine-1837

- A mechanical general purpose computer
- Fully programmable
- Components:
- The mill (CPU)
- The store 1,000 50-digit numbers (RAM/HDD)
- The reader-punch cards (input/output devices)
- Steam driven
- Never built

Babbage's Other Accomplishments

- Mathematician
- Reformed the British post office
- Pioneer in field of actuarial science
- Discovered weather of past years could be ascertained from tree rings
- Invented the cow catcher

Ada, Countess of Lovelace

From "The Innovators" by Walter Isaacson,
Simon \& Shuster, 2014

Ada Lovelace

- Daughter of the poet Lord Byron
- A gifted mathematician
- Life-long friend of Charles Babbage
- 1980-the DoD named a computer language "Ada" in her honor

Luigi Federico Menabrea* © (1809-96)

* Became Prime Minister of Italy in 1867

Congress of Italian Scientists*

- Charles Babbage gave presentation on his Analytical Engine
- Menabrea took notes and published "Sketch of the Analytical Engine Invented by Charles Babbage" (1842)
- Ada Lovelace translated the article and appended "Notes by the Translator"
- "Notes by the Translator" becomes famous
* In Turin, Italy, August 1840

Sketch of

The Crnnalytical Engine

To return to the trigonometrical series. We shall only consider the first four terms of the factor $\left(\mathrm{A}+\mathrm{A}_{1} \cos \theta+\& \mathrm{c}\right.$.), since this will be sufficient to show the method. We propose to obtain separately the numerical value of each coefficient $\mathrm{C}_{0}, \mathrm{C}_{1}$, \&c. of (1.). The direct multiplication of the two factors gives

$$
\left.\begin{array}{rl}
\mathrm{BA}+\mathrm{BA}_{1} \cos \theta+\mathrm{BA}_{2} \cos 2 \theta & +\mathrm{BA}_{3} \cos 3 \theta \tag{2.}\\
\mathrm{~B}_{1} \mathrm{~A} \cos \theta+\mathrm{B}_{1} \mathrm{~A}_{1} \cos \theta \cdot \cos \theta+\mathrm{B}_{1} \mathrm{~A}_{2} \cos 2 \theta \cdot \cos \theta+\mathrm{B}_{1} \mathrm{~A}_{3} \cos 3 \theta \cdot \cos \theta
\end{array}\right\}
$$

a result which would stand thus on the engine:-
Variables for Data

Variables for Results

V_{20}	V_{21}	V_{22}	V_{23}	V_{31}	V_{32}	V_{33}	V_{34}
BA	BA_{1}	BA_{2}	BA_{3}	$\mathrm{B}_{1} \mathrm{~A}$	$\mathrm{B}_{1} \mathrm{~A}_{1}$	$\mathrm{B}_{1} \mathrm{~A}_{2}$	$\mathrm{B}_{1} \mathrm{~A}_{3}$
$\begin{array}{llll}\cos \theta & \cos 2 \theta & \cos 3 \theta\end{array}$							

they have not in fact resolved the double problem which the question presents, that of correctness in the results, united with economy of time.

"Notes by the Translator"

- Ada described an algorithm (program) to compute Bernoulli numbers

$$
\frac{x}{\epsilon^{x}-1}=\frac{1}{1+\frac{x}{2}+\frac{x^{2}}{2 \cdot 3}+\frac{x^{3}}{2 \cdot 3 \cdot 4}+\& c .}
$$

- Suggested the Analytical Engine could be used for things other than numbers
- musical notes
- symbols such as letters

George Boole (1815-64) …

"Cool Boole"

Boolean Algebra (1854)

- A branch of algebra that involves true and false values
- T or 1 for true
- F or 0 for for false

Boolean Algebra (cont.)

- The AND operator (symbolically: \wedge) also known as logical conjunction requires both p and q to be True for the result to be True

p	q	$\mathrm{p} \wedge \mathrm{q}$
T	T	T
T	F	F
F	T	F
F	F	F

1 = T or true
$0=F$ for false

Boolean Algebra (cont.)

- The OR operator (symbolically: v) requires only one value to be True for the result to be True

p	q	$\mathrm{p} \vee \mathrm{q}$
T	T	T
T	F	T
F	T	T
F	F	F

$1=\mathrm{T}$ or true
$0=F$ for false

Herman Hollerith (1860-1929)옹응

Herman Hollerith

- Degree in "Engineering of Mines" from Columbia University in 1879
- Ph.D. from Columbia in 1882
- Professor of mechanical engineering at MIT
- U.S. Census Bureau statistician
- Invented a electromechanical punched card sorter and tabulator

Hollerith's Tabulator and Sorter

Hollerith's Pantograph Punch

Hollerith's Punch Card

First Mass Storage Device

(Most of the 1890 records destroyed by a fire at the Commerce Department in 1921)

Counting the U.S. Population

- 1880 U.S. census took eight years to tabulate
- 1890 census took one year
- First major use of electrical circuits to process information

Tabulating Machine Company

- Formed by Hollerith in 1896
- With two additional companies evolved into the Computing-TabulatingRecording Company (C-T-R) in 1911
- Evolved into International Business Machines (IBM) Corporation in 1924

Foundations of the Modern Computer

Telephone오은

Telephone (cont)

Miss Crook or Miss Mickey (switch operators or operators)

Telephone (cont)

Electro-mechanical switching equipment ~1900

Simple Switch/Relay

Switching

Vacuum Tube …응

- 1904-John Ambrose Fleming invented the diode
- 1906- Robert von Lieben receives a patent for the triode
- 1907— Lee De Forest improves (invents?) the triode
- 1913-AT\&T bought De Forest's patent for \$50,000 (\$1.27 million in 2019)
- 1915-First U.S. coast-to-coast telephone call facilitated by vacuum tube amplifiers \$21/3min (\$522 in 2019)
Fleming's $1^{\text {st }}$ Diode

1930s

Ford cars-a transportation metaphor

Vannevar Bush (1890-1974)

Differential Analyzer* (1928-31)

- World's first analog electrical-mechanical computer
- To solve differential equations by integration
- Could solve equations with up to 18 independent variables
- Subsequent Analyzer versions used to calculate artillery firing tables
- Influential in training and inspiring the next generation of computer pioneers
* aka Continuous Integraph

1937-a Big Year in Computer Science

For the history of the VW "Beetle" see

Konrad Zuse (1910-95) 브ㅇㅡㅏ

Konrad Zuse

- Design engineer-Henschel Flugzeug Werke
- 1935-37-created floating point binary mechanical calculator, the Z1
- 1940-Z2 a revised Z1 with telephone relays
- Employed movie film instead of paper tape
- 1941-Z3 the first fully (?) operational electromechanical digital computer

Konrad Zuse (cont.)

- 1945-computers and documentation destroyed in bombing attack on Berlin
- 1950—Z4 made public (very reliable)
- While working on the Z4 developed Plankalkül, the first high-level computer language
- IBM licensed several of Zuse's patents
- Founded several computer companies (Models Z1 through Z43)

Konrad Zuse's Z3 (replica)

John Vincent Atanasoff 요ㅇㅛㅛ (1903-95)

John Atanasoff at lowa State ~1940

From "The Innovators" by Walter Isaacson,
Simon \& Shuster, 2014

John Vincent Atanasoff

- Iowa State University, Ames
- Developed the Atanasoff-Berry computer (1937 into 40s)
- "first" electronic digital computer
- used vacuum tubes
- used binary math
- used Boolean logic
- solve up to 29 simultaneous linear equations

Atanasoff-Berry Computer

- Computer obscure for many years (until 1960s)
- Rancorous lawsuits involving Mauchley and Eckert

Alan Turing (1912-54) 요요요요

From "The Innovators" by Walter Isaacson,
Simon \& Shuster, 2014

Famous 1937 Mathematics Article

- Title: "On Computable Numbers, with an Application to the Entscheidungsproblem" - Proceedings of the London Mathematical Society, Vols 2-42, Issue 1, 1 January 1937, pp. 230-265
- Published at the age of 24
- Undoubtedly the most famous theoretical paper in the history of computing

Famous 1937 Mathematics Article (cont.)

- A mathematical description of a universal machine to solve any mathematical problem that can be presented in symbolic form
- Known as Turing's computer
- 1935—Fellow at King's College, Cambridge University
- 1937-Turing and John von Neumann discussed what would later be called "artificial intelligence"

First page

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. Turing.
[Received 28 May, 1936.-Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real numbers whose expressions as a decimal are calculable by finite means. Although the subject of this paper is ostensibly the computable numbers, it is almost equally easy to define and investigate computable functions of an integral variable or a real or computable variable, computable predicates, and so forth. The fundamental problems involved are, however, the same in each case, and I have chosen the computable numbers for explicit treatment as involving the least cumbrous technique. I hope shortly to give an account of the relations of the computable numbers, functions, and so forth to one another. This will include a development of the theory of functions of a real variable expressed in terms of computable numbers. According to my definition, a number is computable if its decimal can be written down by a machine.

In $\S \S 9,10 \mathrm{I}$ give some arguments with the intention of showing that the computable numbers include all numbers which could naturally be regarded as computable. In particular, I show that certain large classes of numbers are computable. They include, for instance, the real parts of all algebraic numbers, the real parts of the zeros of the Bessel functions. the numbers π, e, etc. The computable numbers do not, however, include all definable numbers, and an example is given of a definable number which is not computable.

Although the class of computable numbers is so great, and in many ways similar to the class of real numbers, it is nevertheless enumerable. In §8 I examine certain arguments which would seem to prove the contrary. By the correct application of one of these arguments, conclusions are reached which are superficially similar to those of Gödel \dagger. These results

Last page

It may be proved that there is a formula V such that

$$
\left\{\{V\}\left(N_{t(n+1)}\right)\right\}\left(N_{t(n)}\right) \begin{cases}\text { conv } N_{1} & \text { if, in going from the } n \text {-th to the }(n+1) \text {-th } \\ & \text { complete configuration, the figure } 0 \text { is } \\ \text { printed. } \\ \operatorname{conv} N_{2} & \text { if the figure 1 is printed. } \\ \operatorname{conv} N_{3} & \text { otherwise. }\end{cases}
$$

Let W_{γ} stand for

$$
\lambda u\left[\left\{\{V\}\left(\left\{A_{\gamma}\right\}\left(\left\{U_{\gamma}\right\}(u)\right)\right)\right\}\left(\left\{U_{\gamma}\right\}(u)\right)\right],
$$

so that, for each integer n,

$$
\left\{\{V\}\left(N_{\xi(n+1)}\right)\right\}\left(N_{\xi(n)}\right) \operatorname{conv}\left\{W_{\gamma}\right\}\left(N_{n}\right),
$$

and let Q be a formula such that

$$
\left\{\{Q\}\left(W_{\gamma}\right)\right\}\left(N_{s}\right) \operatorname{conv} N_{\gamma(z)},
$$

where $r(s)$ is the s-th integer q for which $\left\{W_{\gamma}\right\}\left(N_{q}\right)$ is convertible into either N_{1} or N_{2}. Then, if M_{y} stands for

$$
\lambda w\left[\left\{W_{\gamma}\right\}\left(\left\{\{Q\}\left(W_{\gamma}\right)\right\}(w)\right)\right],
$$

it will have the required property \dagger.

The Graduate College,
Princeton University,
New Jersey, U.S.A.

Ph.D dissertation (Princeton) "Systems of Logic Based On Ordinals" (1938)

\dagger In a complete proof of the λ-definability of computable sequences it would bo best to modify this method by replacing the numerical description of the complete configurations by a description which can be handled more easily with our apparatus. Let us choose certain integers to represont the symbols and the m-configurations of the machine. Suppose that in a certain complete configuration the numbers representing the successive symbols on the tape are $s_{1} s_{2} \ldots s_{u}$, that the m-th symbol is scanned, and that the m-configuration has the number t; then we may represent this complete configuration by the formula

$$
\left[\left[N_{t, 0}, N_{s,}, \ldots, N_{t_{i w-1}}\right],\left[N_{6}, N_{t_{a i}}\right],\left[N_{e_{n+1}}, \ldots, N_{t u}\right]\right]
$$

where

$$
[a, b] \text { stands for } \lambda u[\{\{u\}(a)\}(b)]
$$

$[a, b, c]$ stands for $\lambda u[\{\{\{u\}(a)\}(b)\}(c)]$,

Cryptography

- Mesopotamian clay tablets ~1500 BC
- Caesar cipher [Julius Caesar (100-44 BC)]

Cryptography (cont.)

- Thomas Jefferson's cypher wheel (1795) ©
- Re-invented or improved by Etienne Bazeries (~1890)
- Basis for "M-94" cipher machine used by U.S. military from 1922 to ~ 1942 ©

Jefferson’s Cipher Wheel*

* Reproduction-24 alphabet wheels

Enigma Machine (1926-1945) 으요

- Invented by Arthur Scherbius
- First marketed to businesses (1926)
- Improved models produced over the years
- Widely used by the German military during World War 2—radio communications
- Used 3-8 alphabet rotors
- Plugboard swapped 10-13 character pairs $(A \rightarrow D, \quad Z \rightarrow L, \quad M \rightarrow B$, etc.)
- 1.589×10^{20} machine settings (3 rotors)

Enigma Machine (cont.)

- Military-changed settings for rotors and plugboard daily
- Decryption required enormous number of calculations (impossible by brute force)
- Weaknesses
- a letter in plain text could not appear as itself in cypher text
- "Das Wetter heute ist..."
- identical message sent in two different encryption systems

German Military Enigma Machine

Bletchley Park

Government Code \& Cypher School (GC\&CS)

Bletchley Park

- Home of British codebreakers in WW2
- Purchased in 1938 by Hugh Sinclair with £6,000 of his money (\$486,000 today) ©
- Many staff recruited from Oxford \& Cambridge
- Mathematicians
- Linguists
- Chess players
- "Mathematicians worked alongside girls in pearls"
- 1938/9—a few dozen staff
- 1945-10,000 staff

Bletchley Park Bombe 요요

- Originally developed by the Poles in 1930s (bomba kryptologiczna)
- electro-mechanical device to help decipher German Enigma encrypts
- Re-designed by Alan Turing and improved by Gordon Welchman
- 1940-2 bombes operational
- 1945-~200 working bombes
- Highly successful in breaking German, Italian, Russian codes... and others

Bombe Replica*

* National Museum of Computing, Bletchley Park

Bletchley Park "Heath Robinson"

- Electro-mechanical device to help decipher German Lorenz encrypts, 1943-5
- Communications for the German High Command and Adolf Hitler
- 10-12 rotors
- Teleprinter communications
- Radio communications later in the war
- British very adept in decoding

Heath Robinson Replica*

* National Museum of Computing, Bletchley Park

Thomas Harold Flowers 욦응 (1905-98)

- Electrical Engineer
- General Post Office at Dollis Hill
- Explored use of electronics for telephone exchanges
- Alan Turing asked him to help

Bletchley Park Colossus 오요응

- Designed by Tommy Flowers
- Mark 2-2,400 vacuum tubes
- Five 6-bit shift registers
- Programmed by switches and plugs, not a stored program
- Paper tape input
- Electric typewriter output

Bletchley Park Colossus (cont.)

- Mark 1 worked in December 1943
- Mark 2 in production June 1, 1944
- 10 Colossi in use by end of war
- Used until 1960

Colossus Replica*

* National Museum of Computing, Bletchley Park

Bletchley Park

1974, F. W. Winterbotham
Published "The Ultra Secret"

John von Neumann (1903-57) 잉

John von Neumann

- Born: Neumann János Lajos (Hungary)
- Father elevated to nobility in 1913
- At age 6 could divide two 8 -digit numbers in his head
- Party trick: memorize page of phone book and recite names and phone numbers
- Age 15 studied advanced calculus
- Age 23 B.S. in chemical engineering and Ph.D. in mathematics
- Professor at Princeton University

John von Neumann (cont.)

- Cultivated and highly sociable
- His wife, "John can count anything but calories"
- Numerous accomplishments in mathematics
- Other contributions:
- Von Neumann computer architecture
- Quantum mechanics
- Game theory (economics)
- Statistics
- Nuclear weapons design
- Worked with Mauchly and Eckert on the ENIAC computer

Claude Shannon (1916-2001) 요용

Claude Shannon

- A grad student under Vannevar Bush at MIT
- 1937—time off from MIT* worked at Bell Labs
- MS thesis: "A Symbolic Analysis of Relay and Switching Circuits"
- switching circuits to simplify electromechanical relays (phone routing)
- proved these circuits could solve all problems that Boolean algebra could solve
* Ph.D. from MIT in 1940

Claude Shannon (cont.)

- 1940—National Research Fellow at Princeton's Institute for Advanced Study
- contact with Hermann Weyl, John von Neumann, Albert Einstein and Kurt Gödel
- During World War 2
- 1943 in contact with Alan Turing
- worked with U.S. Navy's cryptanalytical service
- Considered the father of information theory (his MS thesis)

	0	1	2	3		5	6		8.	9	Difteremer							
												23	4	5		7	8	9
10	1000	0043	0086	0128	0170	0212	0253	0634	0534	0174		812		212				
11	0414	0433	0492	0631	6569 0	0se7	0545	O622	971	0759	1	811		19.2			30	
12	9722	0828	Oest	C699	0840	O2e9	1004	108	1072	1105	3	710		172				
13.	1139	1173	1286	1239	1271	1303	1335	1367	1199	1430	3	610	13	16		23	26	
14	1451	1492	1523	1551	1584	1614	1644	167)	1701	1732	3	69	12	15		21		
15	1761	1740	1818	1547	1875	1905	1931	1959	1987	2914	3	68	11	14 I		20		25
16	2041	2058	2005		2148	2175	2801	2271	2253	2279	3	5					21	24
17	2104	${ }^{23} 2$	135	2185				2450										
18	2583	219	B	262				2718									19	
19	2781 3010	2810 3032	26	265				54,5									18	
20	3010																	
21	322	1243	3263	3284	3354	3324	1345	3165	3385	3404	2	4		101		14	18	18
22	34.24	344	3464	3481	102	3121	3441	3500	3579	3598	2	4		10		14	15	17
23	3617		-2035															$1)$
24 25	3802									32								
25	4199	4166	4181	4200	4216	4212	4248	4265	4281	4798	2	35		81			13	15
27	4314	4330	4345	4362	4378	4393	4509	4425	4440	4456	2	35		8			13	14
28	4472	4287	4502	4518	4533	4548	4564	4579	4504	4009	2	35		8			12	14
23	4624	4699	46.4	4 ten	4653	4 498	4713	4714	472	4757	1	3.4		7			12	
30	4771	4785	4800	4814	4829	4843	$48: 7$	4871	4386	4900	1	34		7		10	II	13
31	4914	4928	4952	4355	4969	4981	4997	S01t	5084	5038	1			7		10	11	
32	sast	5065	5079	5092	Stos	\$119	\$132	5145	\$159	\$172	1	34		7		0	It	
33	5189	5198	9211	5224	5237	5290		5276	5289	5002	1) 4		${ }_{0}$		9		
34	5315	5328	5340	5353	\$356	5378		5403	3416	5428	t			0		9		11
35	544!	5453	5465	5475	5420	5000	5412	5633	5510	stsi	t			6		9	ia	H
34	5563	5575	5587	559	5681	5												
37	5682	5604	3705	5717	5729													
38	5798	5809	5821	5832	5843													
39	5911	5922	5233	5844	5955	5												
48	c021	6031	6002	6053	COES	tara	***	mara				4	-					
$\begin{aligned} & 41 \\ & 42 \\ & 43 \\ & 44 \\ & 45 \end{aligned}$																		
46	6625	6637	6646		Gos	6075		6693	6\%22			23	4	5	6	1	1	8
47	E721	6730	6739	6749	6198	6767	6716	5785	6794	6803		23	4	5		6	?	8
48	6812	6821	6*30	6859	6448	6857	6366	6875	6ss4	6893		23	4	4		6	?	8
49	6902	6911	6830	6928	6977	6446	6255	4654	6922	6981		23		4	5	6	?	8
50	6900	6918	10.7	3016	7004	7013	7042	H090	7059	76\%		23		4		6	7	
51	7076	1084	7093	101	7110	7118	7175	313	${ }^{3} 143$	3152		23		4		0	T	
S1	710	1168	1137	335	7193	7202	7210	7218	1226	7235		$2 \quad 2$		4	5	6	1	1
53	7243	7251	7259	T207	2275	2284	7292	T300	1306	3316		22		4	5	8	6	$?$
54	7324	2312	7340	1348	7158	7164	7372	1390	1888	J194		2.2		4		6.	6	
	0	1	1	3	4	5	6		8			23		5		7	8	

	0	1	1	3	4	5	6	7	8	9	Differense:								
											1	2	3	4	5	6	7	8	9
55	1404	1412	1419	2421	1435	743	7451	T459	T656	7474	1	2	2	3	4	5	5	6	7
58	3682	7000		7505	7513	7589	7124		7443	7551	1	2	2	3	+	5	5	6	$?$
57	-590	T466	1574	7582	7599	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	$?$
59	76)4	7642	369	7651	T64	7672	269	7636	764	7701	1	1	2	3	,	4	5	6	7
59	1709	1716	323	731	7735	7745	7752	7760	ग76T	7174	1	1	2	3	4	4	5	6	7
6	77a2	1739	7796	7501	7810	7818	$2 d 25$	1832	183\%	7846	1	1	2	1	4	4	5	6	6
61	2851	T800	785	2975	T842	T839	7845	1903	2910	7317	t	1	2	3	4	4	3	6	6

George Stibitz* (1904-95) 요으

* 1930 Ph.D. in mathematical physics, Cornell University

George Stibitz

- A mathematician working at Bell Labs same time as Claude Shannon
- worked on how to handle complicated calculations needed by phone engineers
- Created a circuit to add binary numbers using light bulbs and a tobacco tin-at his kitchen table (Model K-1)
- Proposed building a general calculator using an electric circuit (1937)

George Stibitz (cont.)

- Complex Number Calculator (1939)
- 400 relays (switches)
- each opening and closing 20x/sec
- Blindingly fast compared to mechanical calculators
- Glacially slow compared to vacuum-tube circuits just being invented

1940s

* 1939 Ph.D. in physics, Harvard University

	0	1	2	3	4	5	6	7	8	9	Difieremes																	
												23	4	5		7	8											
10	0000	0043	0086	0128	0170	0212	0253	0634	0534	0174		812	17	212			33											
11	Q414	0483	0492	0631	9569	0se7	0545	O62	O7t	0755		811		19.2			30											
12	0N92	0828	0864	C099	9044	Oit9	1004	1088	1072	1106		710	14	17.2														
13	1139	1173	1296	1239	1271	1303	1335	1367	1199	1430		610	13	161		2)												
14	1451	1492	1523	1553	1584	1614	1044	167)	1703	1732		69	12	151														
15	1761	1740	1818	1547	1875	1903	1931	1959	1987	2914		68	11	141				25										
16	2041	2058	2095		2148	213	2801	2227	2253	2279		58					21	24										
17	2504	${ }^{23} 2$	134	2185				2450	2104				10				20											
18	2551	$\text { is } 7$	C_{B}														19											
19	2781	2810	26					5,945									18											
20	3016																11											
21	3222	3243	3263	3284	3394	3324		3365	3385	3404		46		1012		14	18	18										
22	3424	344	3464	3481				3500	3579	1598		4				14	15	11										
23	3617		2ess.					1018										11										
24 25	3802					,				$3 \frac{2}{3}$								4										
26	4159	4166	4183	4200	4216	4232	4249	4265	4281	4295		3 5		810			13											
27	4314	4330	4345	4362	4378	4393	4009	4475	4440	4496	2	3 S		8		II	13											
28	4472	4437	4502	4518	4533	454 L	4564	4579	4504	4009	2	3		8		It	12	14										
23	4624	4659	4654	4569	4653	4698	4113	4781	6742	4757	t	3.4	6	$?$			12											
30	4771	4785	4800	4814	4829	4843	$48: 7$	4871	4386	4900		34		7			11	13										
31	4914	4928	4952	4955	4959	4943	4997	3011	5084	5038		34		7			11											
32	305t	5055	5079	5092	StOS	\$119	5132	5145	\$159	\$112		34		7		9	11											
33	5185	5198	3211	5224	5297	5290	5235	5276	5289	5002		34		0		9	10											
34	5315	5328	5300	5353	\$356	5378	5391	5403	\$416	5428	t	34		0			10											
38	54al	5453	5465	5478	Savo	540	8514	5673	5410	Stsi	1	14	5	6		0	iar											
34	556]	5575	5387	599																								
37	5681 3794		5705 5821																									
39	5911	5922	5833																									
$4{ }^{4}$	6021	4031	6002	6053																								
$\begin{aligned} & 41 \\ & 42 \\ & 43 \\ & 44 \\ & 45 \end{aligned}$																												
46	6625	6637	6646	6656	Mos	6075		6693	6\%02	6712		23	4	5	8	6	\%											
47	6721	6730	6739	6749	6198	6767	6776	6785	6794	${ }^{6803}$		23	4	5			?	8										
48	6812	6821	6×30	689	6848	6857	6366	6875	6884	6893		23	4	4			?	8										
49	1902	6911	6920	6928	497	646	6255	6454	6972	6981		2 7		4		5	?	8										
50	6060	6908	1007	3016	7004	7013	T042	3090	3059	76n		23		4		6	7											
51	7076	7084	7093	3101	710	7118	7150	313	1143			23																
S 1	7160	7168	7197	3135	7193	7202	7210	7218	7226	7235		$2 \quad 2$		4			1											
53	7243	7231	7259	T207	2275	7284	7202	T300	7308	3316		22		4			6											
54	7326	. 7312	7340	7348	7158	7364	7372	1350	1188	J194		2.2		4		6	6											
	0	1	2	3		5	6		8			23		5		7	8	9										

Howard Aiken

- Department head mentioned something in the attic that might help
- A demonstration model of Babbage's Difference Engine (~ 100 years old)
- 1939—wrote research proposal to IBM and Harvard faculty to create a modern version of Babbage's machine
- Harvard sniffed
- 1941-IBM constructed the machine to Aiken's specifications

Howard Aiken (cont.)

- 1941—Aiken joined the U.S. Navy
- Taught at the Naval Mine Warfare School in Virginia (Yorktown?)
- 1944-IBM shipped the Mark 1 computer to Harvard
- Navy assigned Aiken as "officer in charge" of the Mark 1
- all Aiken's staff U.S. Navy personnel
- able to avoid academic bureaucracy
- Harvard still sniffed (no professorship for you-not yet)

Harvard University—Mark I Computer

Harvard Mark I Computer*ㄹ.

* aka ASCC (Automatic Sequence Controlled Calculator)

Harvard Mark I

- 51 feet long, 8 feet high, 4.7 tons
- Digital (base 10) not binary
- Slow-765,000 electromechanical components (6 sec to do a multiplication)
- Programs and data entered by paper tape
- Ran for days without human intervention
- Fully automatic
- "Babbage's dream come true"-Howard Aiken

Harvard Mark I (cont.)

- Successors to Mark 1
- Mark II (1947-8)
- Mark III/ADEC (1949)
- Mark IV (1952)
- Used for U.S. Navy and Air Force projects
- All the work of Howard Aiken

Commodore
Grace M. Hopper, USN OU (1906-92)

- aka "Amazing Grace"
- Computer scientist and U.S. Navy officer (41 years active service)
- "Grandmother" of COBOL
- One of first Harvard Mark I programmers
- Developed first compiler for a computer language
- Coined term "computer bug"

The Original Computer Bug

80 Years of Computer History Lorrin R. Garson

Lifetime Learning Institute of Northern Virginia Summer 2019

Lecture 2 of 3
August 29, 2019

The Original Computer Bug

\uparrow Grace Hopper's research book

From "The Innovators" by
Walter Isaacson,
Simon \& Shuster, 2014

ENIAC요

- Designed by Mauchly and Eckert
- Funded by U.S. Army to calculate artillery firing tables*
- Designed to be a general purpose computer
- Construction started in 1943
- Used decimal, not binary numbers
- 17,000 to 20,000 vacuum tubes
- Failure of 2-6 vacuum tubes/day 50% uptime**
* Also used in the development of the hydrogen bomb
** Longest continuous operation 116 hours

ENIAC (cont.)

- 98 ft long, 8 feet high, 3 feet deep; 30 tons
- Used subroutines and conditional branching
- 5,000 additions and subtractions per second100 times faster than any previous computer
- Operational in 1945-in operation until 1955
- Development cost ~\$500,000 in 1943 (~\$7 million today)
- Origin of the commercial computer industry

* ENIAC = Electronic Numerical Integrator and Computer

EDVAC*⽇ㅡ응

- Successor to the ENIAC
- designed by Mauchly and Eckert
- Funded by U.S. Army
- Designed to be a general purpose computer
- Stored program
- 5.5 KB memory
- Floating point arithmetic (example 3.566×10^{5})
- Used binary numbers
- Used magnetic tape
* Electronic Discrete Variable Automatic Computer

EDVAC (cont.)

- 6,000 vacuum tubes and 12,000 diodes
- Weighed 8.7 tons
- Consumed 56 kW electricity
- 1949—installed at the U.S. Army Ballistics Research Laboratory (Aberdeen, Maryland)
- Operating personnel-30 people per 8-hour shift
- Famous, influential report by John von Neumann on the EDVAC

EDVAC*

* EDVAC = Electronic Discrete Variable Computer

The Modern Computer

- A machine that is (a) electronic, (b) general purpose, (c) and programmable
- "Turing-complete"-can be used to solve any computation problem

So... Who Invented the Modern Computer?

Year	Computer	Binary	Electronic	Programable	General Purpose

Oops... an error, it's Konrad Zuse

Thomas J. Watson, Sr. (1874-1956) ${ }^{0} 0$
CEO \& Chairman IBM 1914-1956

"I think there is a world market for maybe five computers."

Bell Labs (1925) V Bellcore [iconectiv] (1983) , Telcordia Technologies (1999)

Ericsson (2012)

The Transistor ee잉 December 16, 1947

Bell Laboratories

Bell Laboratories요응

- Searching for a replacement for vacuum tubes for switching in telephone circuits
- Vacuum tubes:
- expensive
- faster than relay switches but slow
- require lots of energy
- short lifespan (high maintenance)

Today: Bell Laboratories "The world leader in rodent control technology"

The Inventors

Battle over patents see $\square_{\text {URL }}$

Transistor as a Switch ㅇ.

Transistor as a Switch - ON

Transistor as a Switch - OFF

0

Catalog \#: 2762023

Transistor Radio Regency TR-1
 November 1954
 Texas Instruments and I.D.E.A.

1950s

Man or Machine?

- Alan Turing published "Computing Machinery and Intelligence"*
- a discussion of thinking and intelligence
- A human queries...
- a computer
- and a human
- If the answers from computer and human are indistinguishable...
* Mind, LIX (236), October 1950, pp. 433-460 ©

Man or Machine? (cont.)

- ...is the computer thinking? Does it have intelligence?
- The "Turing Test"
- The seminal paper in artificial intelligence
- "We may hope that machines will eventually compete with men in all purely intellectual fields."—Alan Turning

1951—Univac 1 인

At the U.S. Census Bureau

Univac 1

- Created by Eckert and Mauchly
- First commercial computer in U.S.
- produced by Remington Rand
- 5,200 vacuum tubes, 14.5 tons
- 46 sold at $\$ 1$ million each (\$9 million today)
- 1952—from 1% of voting population, predicted Eisenhower winner over Stevenson

1952 presidential election Eisenhower vs. Stevenson으요

Printout from
Univac 1

IT'S AWFULCY EARLY, BUT I 'LL 60 OUT ON A LIMB.
UNIVAC PREDICTS-wlth $3,398,745$ votes inco
STEVENSON EISEMHOWER
STATES
ELECTORAL
POPULAR

5
43
438442
18,986,436 32,915,049
27,375,090 34,075,529
THE CHANEES ARE NOW OO to 1 IIN FAVOR OF THE ELEETION OF EISEMHOWER. \uparrow
Programmers never imagined needing more than 2 digits

1952—ВМ 7019

IBM 701

- Beginning of IBM's entry into large computers (1953)
- Lease $\$ 15,000 /$ month *
- First commercial scientific computer
- In production 3 years; 19 units leased
- Used by
- aircraft manufactures
- DoD nuclear weapons designers
* \$140,000/month today

1956-IBM 350 Disk Drive이

First commercial HDD
50 platters
100 bytes/platter
5 million 6-bit characters
Total storage 3.75 KB*

- Lease price \$7,000/month
(2019 dollars)

* Subsequent models had 5, 10, 15 or 20 MB

[BM's Current Businesses

Watson				
Uncover insights, engage in new ways and make more confident decisions	Cloud Built for apps, AI-ready and designed with security in mind	Services Work with experts in technology, process and industry to create breakthroughs		
\rightarrow IBM Watson for smarter				
business			$\quad \rightarrow$	IBM Cloud for smarter
:---				
business	$\quad \rightarrow$ IBM Services for smarter	business		
:---				

391 San Antonio Road,

Mountain View, California

1956

Shockley Laboratories

- 1956—established by William Shockley
- funded by Arnold Beckman
- Convinced silicon would replace germanium
- Created theoretical theory of solar cells
- showing a maximum efficiency of 30% *
- Shockley as a manager...
- outstanding in picking talent
- over 20 years, 65 companies were founded by $1^{\text {st }}$ or $2^{\text {nd }}$ generation former Shockley Labs employees
- horrific as a manager
* Solar cells $>40 \%$ efficiency have been created 163

391 San Antonio Road,

 Mountain View, California FRRT SUICON DEVICE AND RESEARCH MANUFACTURING COMPANY IN SILCON VALLEY. THE RESEARCH CONDUCTED HERE LED TO THE DEVELOPMENT OF THE SLICON VALEY. 1956

The Nobel Prize in Physics 1956

Photo from the Nobel Foundation archive.
William Bradford Shockley
Prize share: 1/3

John Bardeen Prize share: $1 / 3$

Photo from the Nobel Foundation archive.
Walter Houser Brattain
Prize share: $1 / 3$
"...for their researches on semiconductors and their discovery of the transistor effect."

Fairchild Semiconductor International, Inc. ${ }^{*}$ -

- 1957-founded by the "traitorous eight" - a division of Fairchild Camera and Instruments
- Pioneer in manufacturing transistors and integrated circuits

More about Robert Noyce and Gordon Moore shortly

* Since 2016 a subsidiary of ON Semiconductor

We have a problem...

Integrated Circuits

Jack Kilby 요요

- Worked at Texas Instruments
- Patent filed February 6, 1959 "Miniaturized Electronic Circuits"
- 2000—Nobel Prize in Physics with Zhores Alferov and Herbert Kroemer*
- Technology improved by Robert Noyce
- Kilby used germanium
- Noyce used silicon
- Noyce eliminated wires
- other enhancements
* Had Robert Noyce survived, he probably would have been included

1957—Fortran Developed…

- Designed by John Backus \& team at IBM
- General purpose language especially suited to numeric and scientific computing
- Used for:
- Weather prediction
- Computational fluid dynamics
- Computational physics and chemistry
- Crystallography
- Still in use today (legacy systems)

1959-Cobol 요

- Designed by CODASYL* for DoD
- Based on design work of FLOW-MATIC developed by Grace Hopper
- Widely used in business, finance, and administrative systems on mainframes
- Verbose, 300+ reserved words
- Largely used in legacy systems, but...
- estimated 100 billion lines of COBOL still used today
* Conference/Committee on Data Systems Languages

DEC PDP-1 (1959)아안

DEC = Digital Equipment Company

PDP-1

- PDP = Programmed Data Processor
- First minicomputer
- 2,700 transistors and 3,000 diodes
- 9 to 65 KB RAM
- 187 KHz clock speed*
- Seed of "hacker culture" at MIT
- "Spacewar"-first computer game, created by Steve Russell
* $187 \mathrm{KHz}=\mathbf{0 . 0 0 0 1 8 7} \mathbf{~ G H z} \leftarrow$ Several comparisons This computer: $\mathbf{2 . 6} \mathbf{~ G H z}$ to follow

1960s

[BM 7030 "Stretch" Supercomputer ©

IBM 7030 Supercomputer 응

- IBM's first transistorized computer (1961)
- Designed by Gene Amdahl 0
- World's fastest computer 1961-64
- Price-\$8 million (\$66.5 million today); only 9 sold
- 35 tons
- 64-bit processor
- Memory 2.048 MB
- Speed 1.2 MIPS

[BM System/360

IBM System/360

- In service 1965 to 1978
- a family of 14 models of computers
- Designed by Gene Amdahl
- Commercial and scientific applications
- 256 KB to 8 MB memory
- Backward compatibility

Overview IBM Computers

Year	Model	
1953	701	IBM's entry into large computers
1954	NORC	Naval Ordance Research Computer
1958	SAGE AN/FSQ-7	North American Air Defense System at MIT
1959	1401	Popular enterprise system, high volume
$1960-68$	System/360	Dominant mainframe systems
1966	System/4Pi	9000 sold to DoD by the 1980s
1970	System/370	Replacement for System/360 mainframe family
1975	5100	"Portable" computer (50 Ibs.)
1981	IBM PC	Industry standard. \$1,565 and up (today \$4,500 and up)
1983	System/36	Mid-range, office automation
1983	IBM PCjr	For the home market
1988	System/400	Medium size business computer family
1990	System/390	Replacement for System/370
1990	RISC System/6000	Workstations
1992	Thinkpad	Notebook computer
2001	eServer "Regatta"	Unix based
2003	eServer zSeries 990	Enterprise-class server
2005	System z9	Mainframe
2006	I5	Medium size business computer
2008	WebSphere line	Premises and application servers
2015	z13	Small mainframe, \$75,000
2017	z14	Mainframe

|BM "Minnow" Floppy Disk Drive (1969)

IBM "Minnow" Floppy Disk

- Developed in 1967
- marketed starting 1971
- 8-inch (200 mm) floppy disk
- 80 KB capacity

Types of Floppy Disks

CDC 6600 Supercomputer*은

* CDC = Control Data Corporation

CDC 6600 Supercomputer

- World's fastest 1964-69
- Designed by Seymour Cray 0
- $\$ 7$ million (today $\$ 56$ million)
- 6 tons
- CPU $10 \mathrm{MHz}^{*}$
- RAM 982 KB
- Used FORTRAN
- for scientific and engineering projects
* $10 \mathrm{MHz}=0.01 \mathrm{GHz}$ This computer: $\mathbf{2 . 6} \mathbf{~ G H z}$

"Mother of All Demos"

- ACM/IEEE Meeting in San Francisco, December 9, 1968; ~1,000 attendees - presented by Douglas Engelbart
- Live 90-minute demo of the "oN-Line System", aka NLS
- Telephone link to Menlo Park (30 miles away)
- On YouTube today
- The first public demonstration of the following on a single system...

"Mother of All Demos" (cont.)

- Hypertext
- Graphics
- Windows

A panoramic view of the future

- Video conferencing
- Computer mouse
- Word processing
- Dynamic file linking
- Revision control
- A collaborative real-time editor
- Efficient navigation and command input

Engelbart's Mouse

Intel 9

- 1968-founded by Robert Noyce and Gordon Moore... and Andrew ("Andy") Grove
- Intel named from integrated electronics
- Early developer of SRAM and DRAM memory chips 응
- Following success of the PC, microprocessors became their major products (x86 architecture)
- In competition with Microsoft for control of the direction of the PC industry
- In strong competition with AMD and others

Intel 1103 DRAM* Chip e

- Released October 1970
- 1 KB capacity
- Replaced magnetic core type memory
* The traditional RAM in computers are DRAM (Dynamic Random Access Memory)

1970s

E-Mail Comes Along

- Created by Ray Tomlinson
- computer engineer at MIT
- 1971 sent first message to himself via ARPANET
- known for "@" locator in email addresses

OR

- Created by Shiva Ayyadurai 0
- developed as a high school student in late 1970

IBM 3850 Mass Storage System

- Released in 1974; used through 1986
- Used thousands of cartridges (50 MB each)
- Whole system held 472 GB of data*
* This computer has 250 GB of SSD storage

WD 10,000 GB drive \uparrow

Ted Hoff (1937-) ©

- Ph.D. Elec. Eng. Stanford 1962
- Intel 1968-1989
- Atari 1984-1989
- Teklicon 19902007

First to Market—Computer on a Chip (1971) Intel 4004 -

* $740 \mathrm{KHz}=0.00074 \mathrm{GHz}$ This computer: 2.6 GHz

Most Used Operating Systems

- Home computers:
- Windows (75.47\%)
- macOS (12.33\%)
- Linux (1.61\%)
- Chrome OS (1.17\%)*
- Smartphones—Android (Linux based)
- Tablets-iOS
- Linux in smart devices and loT
- Linux in Web servers and supercomputers
* As of January 2019. 9.42\% other or unknown; see

Unix 으응

- Developed at Bell Labs (1969-70) by Ken Thompson and Dennis Ritchie
- A multi-user system
- Developed on DEC PDP 11/20
- Written in assembler language
- For word processing...
- for patent applications
- ed text editor and formatting with nroff
- nroff quickly spawned troff the first electronic publishing system

Unix (cont.)

- 1972-73-the "C" programming language created by Dennis Ritchie
- 1973—Unix was re-written in "C"
- 1973-Unix licensed to educational institutions

The Unix Family

HP-35 Scientific Calculator 응

- Released in 1972
- Marketed as "The new electronic slide rule"
- A slide rule killer!
- \$395-\$2,400 in today's money

Pong ${ }^{\text {g }}$ 요

- 1972 Created by Alan Alcorn at Atari
- The first video game
- As a programming training exercise
- Became wildly popular
- Launched the electronic game industry

Honeywell vs. Sperry Rand 응

- 1964—Sperry Rand Corp granted a patent filed by Eckert and Mauchly for the ENIAC
- Sperry Rand sued Honeywell on claims of patent infringement
- Honeywell sued for monopolistic practices and fraud seeking to invalidate their patent
- Ruling (October 19, 1973): ©
- court invalidated Sperry Rand's patent
- assigned invention of electronic digital computer to John V. Atanasoff
- put invention of electronic digital computer in public domain

Xerox 9700 Laser Printer ㅇㅛㅛ

- First commercial laser printer - released October 1977
- Developed by Gary Starkweather at PARC in early 1970s
- Used a PDP 11/34 for print controller and rasterizer
- 300 dpi
- 120 pages/minute
- Price \$500,000 (?) O

Xerox PARC Alto Computer 벙

- 1973—first computer with graphics oriented OS
- decade before other GUI computers
- Mouse
- Late 1970s thousands in use at Xerox facilities
- ~500 at universities
- 1979 Steve Jobs visited PARC
- 1981—attempts to market for \$100,000 (\$289,000 today)

Cray 1 Supercomputerie

Cray 1 Supercomputer

- 1976-first installed Los Alamos National Laboratory
- 64-bit processor; $80 \mathrm{MHz}^{*}$
- 8.39 MB RAM
- Storage 303 MB
- Price $\$ 7.9$ million ($\$ 36$ million today)
- Eventually >100 sold
- Ten times faster than closest competitor
- One of most successful supercomputers in history
* $80 \mathrm{MHz}=0.08 \mathrm{GHz}$

This computer: $\mathbf{2 . 6} \mathbf{~ G H z}$

Manufacturing Computer Chips 아이아

The Internet

2004 Stamp of Azerbaijan 35 Years of the Internet, 1969-2004

Pre-Internet Thoughts

- Early 1900s--Nikola Tesla imagines a "world wireless system" -
- 1930s \& 40s—Paul Otlet and Vannevar Bush conceive searchable storage system for books and other media
- Early 1960s-J.C.R. Licklider popularized idea of an "Intergalactic Network"
- 1965-Ted Nelson published article about hypertext 0

Internet History in a Nutshell

1969

The NSFNET Solution
End to End network would have been too expensive. Therefore NSFNET solves one part of the puzzle and establishes the Network's design.

Commercial Internet
1991

- 1969—DoD created ARPANET*
- linking UCLA, UC Santa Barbara, Stanford (SRI), and University of Utah
- first message "LO" for "LOGIN"...
... then Stanford's computer crashed
- system recovered "LOGIN" sent
- 1974—Vinton Cerf and Bob Kahn published "A protocol for Packet Network Interconnection"describing TCP
* Advanced Research Projects Agency Network

The Internet (cont.)

- 1974-first ISP (Telenet) established; commercial version of ARPANET
- 1981-NSF provided a grant to establish Computer Science Network (CSNET)
- providing networking services to university computer scientists (an ISP)
- 1983—ARPANET adopted TCP/IP
- 1983—DNS established (.com, .edu, .gov)
- 1985—Symbolics Computer Corp became the first registered domain "Symbolics.com"

The Internet (cont.)

- 1985-NSFNET established
- 1986-both NSFNET and ARPANET quickly expanded across U.S.
- 1987-20,000 hosts on the Internet
- 1987-Cisco shipped first router
- 1990-Tim Berners-Lee developed World Wide Web at CERN (released 1991)

The Internet (cont.)

- 1991-NSF opened the Internet to commerce
- 1993--Marc Andreessen announced the Mosaic Web browser (numerous other browsers see
- 1994—Justin Hall developed the "blog"
- 1995-NSF turned over Internet backbone to private industry (NSFNET discontinued)
- Was the Internet designed for survival of communications in the event of nuclear war?
- Yes-DoD, who funded its development
- No-academics who did much of the design and development
- 1998--established as international not-for-profit
- Assigns, manages and controls the domain name system (DNS)
- Example domain name:
- gmu.edu
- 129.174.1.59
- Does not control Internet content

Internet Users 2005-2018

5000
$\underset{4000}{ }$ Something special about 4,294,967,996

"Crowded Internet Problem"

- Each user on the Internet requires an IP address, example 192.168.40.88
- At present IP addresses (IPv4) use 32 bits (4 bytes) which accommodates 2^{32} users, i.e., 4,294,967,996
- Remember the "Year 2000" problem? Solution...
- IPv6, using 128 bits, is being deployed $-2^{128}=3.4028 \times 10^{38}$ addresses

IBM 5100오요

Back to the 1970s

IBM 5100

- 1975-introduced on the market
- First (?) "portable" computer, 53 lbs
- IBM Palm CPU, 1.9 MHz*
- Price $\$ 9,000$ to $\$ 20,000$ ($\$ 42,500$ to \$94,500 today)
* 1.9 MHz = 0.0019 GHz This computer: 2.6 GHz

Personal Computer Timeline

- 1975-IBM launches IBM 5100, first to look like a modern desktop PC
- 1975-Microsoft founded by Bill Gates and Paul Allen
- 1976—Apple founded by Steve Jobs and Steve Wozniak
- 1976—Apple sold 200 Apple 1 computers

Apple Computer Manufacturing Facility

2066 Crist Drive, Los Altos, California

Personal Computer Timeline (cont.)

- 1977—Radio Shack introduced TRS-80
- 1977-Commodore PET introduced
- 1981-IBM launched PC with licensed Microsoft's DOS
- 1981—Osborne 1; \$1,800* (23.5 lbs) (CP/M)
- 1983-Compaq Portable, IBM PC compatible (Microsoft DOS), \$3,590**, 28 lbs.
- 1984—Dell Computer Corporation launched
* $\$ 5,000$ in 2019 dollars
** $\$ 9,590$ in 2019 dollars

Personal Computer Timeline (cont.)

- 1984—Apple launched the Macintosh
- 1985-Microsoft introduced Windows OS
- 1980s-90s-Numerous advances in Windows PCs and Apple computers
- 2002—one billionth PC sold
- 2008-laptop shipments overtook desktop computer sales
- 2007-2019—smartphones

Homebrew Computer Club 요요

- March 1975-first meeting in Gordon French's garage in Menlo Park, California
- Hobbyists, engineers, programmers
- After one year ~750 members
- Three notable members:
- Steve Jobs
- Adam Osborne
- Steve Wozniak
- At least 23 tech companies got their start at Homebrew

NEWSLETMER

Homebrew Computer Club

Robert Reiling, Editor \square Post Office Box 626, Mountain View, CA $94042 \square$ Joel Miller, Staff Writer Typeserting, graphics and editorial services donated by Laurel Publications, 17235 Laurel Rd., Los Gatos, CA 95030 (408) 353-3609

RANDOM DATA

Computer clubs continue to form around the country...E. Brooner would like to have material to elp "n in the Kalispell area His Address is 236 Lakeside, Montana 59929

$$
\begin{aligned}
& \text { 6. Lakeside, Montana } 59922 \text {. } \text { Did you see the SOI. ter }
\end{aligned}
$$

Did you see the Sol terminal demonstrated by Bob Marsh at the Sept. Ist meeting? An excellent design that will interest hobbyists and commercial 6200 Hollis St. Emeryville, CA 94608 . Write them for prices and specifications.

The OSI Systems Journal has been sent to all OSI customers (free-at least for the time being). It's a bimonthly magazine with plans to go monthly in the fature. There are 28 pages in the first issue (August 1976. Vol. 1, No. 1) with a hardware feature covering the OSI 440 Video Graphics System and software, features concerning Tiny BASIC for the 6800 and a Graphics Editor for the 6502. It also includes OSI product and software catalog data. The BASIC is, of course, the 2K Tiny BASIC developed by Tom Pittman. Many of you have met Tom at the Homebrew compuer Club meetings. The OSI Systems Journal is a good wa software more about the OSI computer hardware contact address is The OSI Systems Journal PO. Box contact address is: The OSI Systems Journal, P.O. Box

KIM-1 users now have
Kim-1 users now have a newsletter. Eric Rehnke is producing the newsletter every $5-8$ weeks, MOS Techall known KIM owners. The started by sending copies to deperdent of MOS Technology, Inc. The newsletter is devoted to KIM-1 support. Subscriptions are $\$ 5.00$ for the next six issues. Contact "KIM-1 User Notes," c/o Sric C. Rehnke, Apt. 207, 7656 Broadview Rd., Parma Ohio 44134.

The BAMUG club has a new contact address. It is BAMUG, c/o Timothy O'Hare, 1211 Santa Clara Ave. Alameda, CA 94501. Write Timothy for club information. I suggest you include a stamped, self-addressed envelope.

Beware of board snatchers! Glenn Ewing reports 11 boards were taken out of his IMSAI computer. The boards are: MPU, 4 RAM-4's, SIO-2, P10-4, PIC-8 PROM-4, IFM and FIB. Glenn suggests you consider providing good security for your computer and associated equipment. In his case the computer was in a locked office which was burglarized. In the event you
have information on the above boards, write Lt. Glenn Ewing, Code 62EI, Naval Post Graduate School, Monterey, CA 93940.
For family and friends of people who always wanted to know about computers, but didn't want to ask them, four easy-going classes are available starting oct. 19 th on Tuesdays fom to 9 p.m. You can'learm You will also work and the jargon deciphered see what you can do with a computer, play some games nhat you can do with a computer, play some games Community Computer Center, 1919 Menalto Ave Menlo Park, CA 94025, phone (415) 325-4444.

A call for papers in personal computing has been
ssued by the 1977 National Computer Conference. The conference is scheduled for June 13-16, 1977. I have a few copies of the guidlines if you would tike to submit a paper

The First West Coast Computer Faire will be held April 16 and 17, 1977 at the San Francisco Civic Audiorium. This fare is shaping up rapidly, If you would ike to lead a conference or participate in a conference session, please contact me. More information about the Faire is in the accompanying article.

THE FIRST WEST COAST COMPUTER FAIRE
A Call For Papers And Perticiperion

The San Francisco Bay Area is finally going to have a major conference and exhibition exclusively concer West Coast Computer Faire. And it promises to be massive one! It will take place in the largest convention faclity in Northem California: The Civic Auditorium in San Francisco. It will be a two-and-a-half day affair starting on Friday evening and running through Sun day evening, April 15-17.

It is being sponsored by a number of local and regional hobbyist clubs, educational organizations and professional groups. These include:

The two largest amateur computer organizations in the United States-the Homebrew Computer Society
Society tion Of Computing Machinery-the San Francisco Chapter and the Golden Gate Chapter
Stanford University's Electrical Engineering De-
partment

HOW TO "READ" FM TUNER SPECIFICATIONS

PROJECT BREAKTHROUGH!

World's First Minicomputer Kit to Rival Commercial Models... "ALTAIR 8800"

ALSO IN THIS ISSUE:

- An Under-\$90 Scientific Calculator Project

- CCD's-TV Camera Tube Successor?
- Thyrisfor-Controlled Phofoflashers

TEST REPORTS:

Technics 200 Speaker System
Pioneer RT-1011 nnon.Doal Darnuiar

Edmund Scientil a

Guess Who?

Bill Gates' open letter to Homebrew Newsletter...

decrying theft of software by hobbyists passing on Microsoft's Altair BASIC

To me, the most exitical thing in the bobby narket right now is the lack of good software courses, books and software itsolf. Without good software and an owner who understands programming, a hobly computer is wasted. Will quality software bo written for the hobly market?

Almost a year ago. Paul Allen and myself, expecting the hobby market to expand, hired Nonte Davidoff and developed Altair Basic. Though the initial work took only two months, the three of as have spent most of the last year documenting, improving and adding features to BASIC. Now we have 4K, GK, EXTENDED, BOM and DISK BASIC. The value of the computer time we have used exceeds $\$ 40,000$.

The feedback we have gotten fron the hundreds of people who say they are using BASTC has all been positive. Two surprising things are apparent, bowever. 1) Most of these "users" never bought BASIC (less than 10% of all NItair oumora have bought BASIC), aunl 2) The amount of royalties we have received fron sales to hobbyists makes the time apent of Altair BASIC worth less than $\$ 2$ an hour.

Why ia this? λs the majority of hobbyiats must be aware, most of you steal your software. Hardware must be paid for, but software is something to share. Who cares if the people who worked on it get paid?

Is this fair? One thing you don't do by stealing software is get back at NXTS for some problem you may have had. MITS doesn't make money selling software. The royalty peld to us, the manual, the tape and the overhead make it a break-even operation. One thing you do do is prevent good software from being written. Who ean afford to do professional work for nothing? What hobbyist can put 3 -man years into programming, finding all bugs, documenting his product and distribute for free? The fact is, no one besides us has invested a lot of money in hobby software. We kave written 6800 BASIC, and are writing 8080 APL and 6800 A2L, but there ig very little incentive to make this software available to hobbyists. Most directly, the thing you do is theft.

What about the guys wh re-gell Altair BASIC, aren't they making money on hobby software? Yes, but those who have been reported to us may lose in the end. They are the ones who give hobbyists a bad name, and should be kicked out of amy club meeting they show up at.

I would appreciate letters fron any one who wants to pay up, or has a suggestion or comment. Just wxite me at 1180 Alvarado SE, \$114, Albuquerque, New Mexico, 87l0B. Nothing would please me more than being able to hire ten programers and deluge the bobly market with good software.

Bill Gates
 (1955-) ©

Paul Allen (1953-2018) ${ }^{0}$

Microsoft

- 1975-founded by Bill Gates and Paul Allen - to develop and sell BASIC for Altair 8800
- Products:
- 1980-MS-DOS (licensed to IBM)
- 1985-Microsoft Windows
- 1990-Microsoft Office
- 2001-Xbox
- 2008--Azure Services (Cloud computing)
- 2011—Office 365
- 2012-The Surface laptops
- 2019-Market capitalization $\$ 1.07$ trillion

Guess Who?

1973—visited the guru Maharaj-ji in India

Steve Jobs
 (1955-2011)

Steve Wozniak (1950-) ${ }^{-}$

Who was the third founder of Apple?

Apple, Inc.

- 1976-founded by Steve Jobs, Steve Wozniak and Ronald Wayne*
- Products:
- 1970s—computers
- 2001-iTunes
- 2001—iPod
- 2007-Apple TV
- 2007-iPhone
- 2012-iPad
- 2014-Apple Pay
- 2015—Apple Music
- 2016-Apple Watch
- 2019—Credit card \& entertainment (streaming, games, etc)
- 2019—market capitalization $\$ 962$ billion
* In 1976 sold his 10% share in Apple for $\$ 800$

Apple, Inc. 8 The Computer Company The Smartphone Company

Apple revenue by category (ttm)

2018 revenue from computer sales $\$ 25.3$ billion Profit margin of $\sim 30 \%=\$ 7.59$ billion profit

80 Years of Computer History Lorrin R. Garson

Lifetime Learning Institute of Northern Virginia Summer 2019

Lecture 3 of 3
September 5, 2019

Apple, Inc. The Computer Company The Smartphone Company

Apple revenue by category (ttm)

2018 revenue from computer sales $\$ 25.3$ billion Profit margin of $\sim 30 \%=\$ 7.59$ billion profit

1980s

Seagate ST-506 ©

- 1980—first HDD for PC (5.25-in)
- 5 MB capacity
- \$1,500 (\$4,800 today's money)

Sun 1 Workstation

- 1982-designed by graduate students at Stanford University
- SunOS (derived from Unix 7)
- Motorola $68000 \mathrm{CPU}, 10 \mathrm{MHz}^{*}$
- 256 KB to 2 MB RAM
- No windows system (later X Window)
- 2010—Sun Microsystems purchased by Oracle Corp.
* $10 \mathrm{MHz}=0.01 \mathrm{GHz}$ This computer: 2.6 GHz

The First "Internet of Things""으응

- 1982—Coke vending machine at Carnegie Mellon University
- "Called home" to report:
- inventory
- temperature of drinks
* aka loT

(number devices-billions)

lo installed base, global market, billions

Smart Speakers

Amazon Echo*
Google Home

Apple HomePod $2^{\text {nd }}$ Gen

* The Amazon Echo first came out on November 6, 2014

Internet of Things
 Meet Meural (2015)

Experience the world of art at your fingertips

The Meural Canvas is a smart art frame that renders images as lifelike and textured as museum originals. Each Meural Canvas combines state-of-the-art tech with artful design:

- With TrueArt technology, you can see each and every brushstroke
- It's easy to upload your own images
- Works with Alexa for voice control
- Three ways to control: the wave of your hand, our app, and our online dashboard
- Hang in vertical or horizontal-the frame automatically detects its orientation

Internet of Things

DATA IN TRANSIT
(FORGEROCK

CD-ROMs* and DVDs

- 1984—Grollier's Electronic Encyclopedia (12\% of capacity)
- Standard CD-ROM 120 mm holds 550-737 MB
- 1997—DVDs available
- 15 types
- 3.95 to 9.39 GB capacity
* Introduced by Denon and Sony at a computer show in Japan in 1984

Richard Stallman (1953-)이응

Richard Stallman

Open Source Software

Name	Year Established	URL
GNU Project	1983	0
Free Software Foundation	1985	0
Open Source Initiative	1998	0
Apache Software Foundation	1999	0
Linux Foundation	2000	0
Gnome Foundation	2000	0
Python Software Foundation	2001	0
Eclipse Foundation	2004	0
Software Freedom Law Center	2005	0
OW2 Consortium	2007	0

Free Office Automation Software

Name	URL	Comments
Google Docs	Θ	Web-based, works with any browser
iWork	Θ	macOS
LibreOffice	Θ	Window, macOS, Linux
NeoOffice	Θ	macOS
Polaris Office	Θ	Windows, macOS, iOS, Android
SoftMaker FreeOffice	Θ	Windows, macOS, Linux
WPS Office	Θ	Windows, Linux, iOS, Android

Not Free

- Microsoft Office-Office 365 is now dominant
- Google's G Suite

Microsoft Word ㅇo

- Introduced in 1983 under the name "Multi-Tool Word" for Xenix computer
- 1983—for IBM PCs and Apple OS
- 1985-AT\&T Unix PC and Atari ST (Tramiel OS)
- 1989-Microsoft Windows and SCO Unix
- 1988-Microsoft Office (Windows and macOS)
- Word
- Excel
- PowerPoint
- Outlook (1997)
- OneNote
- Publisher and Access (Windows only)

Famous Apple Commercial

- 1995-Clio Awards Hall of Fame
- 1995—Advertising Age, Greatest Commercial
- 1999—TV Guide, Greatest Commercial of All Time
- 2003—Hall of Fame Award
- 2007—Best Super Bowl Spot
- Others...
- Available on YouTube

NeXT Inc. 요요요

- 1985—founded by Steve Jobs
- Created three generations of the NeXT computers (a workstation for the academic market)
- Created the Unix-like NeXTSTEP operating system
- 1990s—used at George Mason University
- 1990s—used by Tim Berners-Lee to create WWW
- 1997-Apple purchased NeXT Inc. to acquire
- Steve Jobs
- NeXTSTEP OS

The Morris Worm 옵읍

- 1988—Robert Morris, age 23, released an Internet worm, aka "The Great Worm"
- caused major problems for days infecting 1000s of Unix computers
- a denial of service attack
- first person convicted under "Computer Fraud and Abuse Act"
- Son of a computer security expert at NSA
- Robert Morris became tenured professor at MIT in 2006 8

Computer Defeats Master Chess Players…

- 1989—IBM Computer "Deep Thought" defeated David Levy
- 1996—IBM "Deep Blue" defeated Garry Kasparov*; 4 to 2 games
- 1997-rematch, computer wins again 3.5 to 2.5 games
* Reigning world champion and Grand Master

1990s

PGP Software

- 1991—PGP* encryption software created by Phil Zimmermann
- uses an exchange of public and private keys
- Used for encryption of e-mail, files, directories, disk partitions, etc.
- 1993-U.S. government started a criminal investigation; dropped case in 1996
- 2002—PGP, Inc. formed
- 2010—Symantec acquired PGP, Inc. -
* Pretty Good Privacy

Encrypted Communications

\downarrow Message Bob
\downarrow Bob acquires

Google

Larry Page (left) Oand Sergey Brin or in garage in Menlo Park (Garage belonged to Susan Wojcicki, now CEO of YouTube)

Google 읍

- 1998-Google, Inc. founded
- 1998—had an index of ~ 60 million Web pages
- crawling the Web, indexing \& ranking
- 1998—widely recognized as best search engine
- Unofficial Google moto "Don't be evil"
- 2000—started selling ads based on:
- price bid
- click-throughs (average $\$ 1$ to $\$ 2 /$ click)
- 2004—Google went public

Google (cont.)

- 2015-reorganized as Alphabet, a holding company
- 70 offices in 50 countries (?)
- 2019—market capitalization (Alphabet, Inc.) $\$ 835$ billion

Amazon읍

- 1994—established, selling books online
- software, video games, apparel, jewelry, etc.
- 2005-Web Services started (Cloud storage)
- 2007—Amazon Fresh
- 2007—Amazon Kindle
- 2010-Sales of Kindle books > hardcopies
- 2014—Amazon Echo
- 2015—Amazon Restaurants
- 2017-Whole Foods acquired
- 2019—market capitalization $\$ 904$ billion

Cloud Storage and Services

Your backup isn't here

Cloud Storage \& Services 으응

Cloud Infrastructure Services - Market Share
(laaS, PaaS, Hosted Private Cloud)

Linus Torvalds
 (1969-) Oun Out Oit

Linux요요

- 1991—Torvalds released the Linux kernel*
- 1992—Kernel became open source
- Kernel included in all Linux distributions ("distros"), i.e., Debian, Fedora, Ubuntu...
- Used in <2\% of desktop computers
- Linux leading OS in servers \& supercomputers
- Used in TVs, routers, cars... and lots of IoT
* Kernel-lowest level of software that interfaces hardware with applications
- 324 million lines of code (2009)
- 1000s developers
- $\$ 8$ - $\$ 19$ billion to develop by deblan.

The Dark Web*벙요용

- 1990s-created by U.S. government to exchange information anonymously
- known as the TOR project
- accessed using the Tor Browser
- Widely distributed systems
- Uses:
- Secret/anonymous communications
- Sale of drugs, arms, prostitution, etc.
- Used by criminal groups
* Not to be confused with the "Deep Web" 276

Silk Road ㅇ.

- 2011—Launched by Ross Ulbricht, aka "Dread Pirate Roberts"
- First (?) "darknet" black market, selling:
- drugs
- arms
- forged documents
- murder-for-hire (?)
- 2013—shut down by FBI
- 2015—Ulbricht convicted of numerous crimes and sentenced to life plus 40 years without parole

Wifi 뵤요응

- Introduced in 1997
- 2.4 GHz , frequency...
- multiple channels
- range 150 feet indoors
- range 300 feet outdoors
- 5 GHz frequency...
- multiple channels
$-\sim 1 / 3$ the range of 2.4 GHz but higher speed
- 7 frequencies each with multiple channels
- A tortured history of numerous lawsuits between patent holders

WiFi Standards

WiFi Standard	Networks
WiFi 1	802.11 b
WiFi 2	802.11 a
WiFi 3	802.11 g
WiFi 4	802.11 n
WiFi 5	802.11 ac

WiFi 6 (802.11ax) coming $3^{\text {rd }} \mathrm{Q} 2019$ -

Nessebar, Bulgaria

Harald Gormsson King of Denmark 940-981

Bluetooth 읍

- 1994-invented by Jaap Haartsen - released 1998
- Peer-to-peer communication technology
- Range...
- Initally: <33 feet
- Bluetooth 5.0: 100 to 1,000 feet
- Installed in billions of devices each year

2000s

Year 2000 Fiasco

You Can't Avoid It!

 SURVIVAL STRATEGIES FOR:- Feeding Your Family
- Staying Warm
- Accessing Cash
- Coping Without

Utilities and Transportation

WHEN THE COMPUTER BUG STRIKES!
An Action Plan to Protect Yourself, Your Family, Your Assets, . and Your Community On JANUARY 1, 2000

MICHAEL S. HYATT

Author of the Alinu Jork ©imes Bestseller
The Millennium Bug

You know the Y2K threat
is real, and less than a yrar
away... But
DONT PANIC
Here's eventhing you
need to survive. Simply

* Ansess your preparednes and see what you must do to protect yourself and your familk, then
- Follow the step $\begin{aligned} & \text { y } \\ & \text { step }\end{aligned}$ Preparasion Cheollist in each chapter-so aothing is left to chance

PLUS:

- Hundinds of resources for finding the emengenc supplies you need
- Contingency plara whether the crises lasts for 72 hours, 30 days 3 months, or I year

There's still time, but you mast get started now. This book provides the simple. comprchensike plan you need to surive the coming criks

Y2K Problem요용

- Dates stored in 2 bytes (string variable): "60" for 1960, "99" for 1999 $\checkmark 99-60=39$ (no problem)
- When year 2000 arrived "00"...
$\checkmark 00-60=-60$ (a problem)
- If dates had been stored as 2 byte integers, dates up to $65,536\left(2^{16}\right)$ could have been accommodated
$\checkmark 2000_{\text {int }}-1960^{\text {int }}=40$ (no problem)

The 2038 Problem

On Tuesday, January 19, 2038 [at 03:14:07 (UTC)]
Some computers' time will revert to...
Friday, December 13, 1901 [at 20:45:52 (UTC)]

Worry-warts
 enjoy the

2000 (?)-"First" Thumb Drive (IBM)*ㅇ..

* "First" to mass market in the U.S.

Thumb Drives

- 2000—sold by IBM, 8 MB capacity
- Capacity today: 4 GB to 1 TB
- Longevity: 3,000 to 100,000 writes

Connectors	$\begin{gathered} \text { USB } 1.0 \\ 1996 \end{gathered}$	$\begin{gathered} \text { USB } \\ 2.0 \\ 2001 \end{gathered}$	USB 2.0 Revised	$\begin{gathered} \text { USB } 3.0 \\ 2011 \end{gathered}$	$\begin{gathered} \text { USB } 3.1 \& 3.2 \\ 2014 \& 2017 \end{gathered}$
Data rate	$\begin{gathered} 187.5 \mathrm{kB} / \mathrm{s} \\ \text { (Low } \\ \text { Speed) } \end{gathered}$	60 MB/s	$60 \mathrm{MB} / \mathrm{s}$	$\begin{gathered} 625 \mathrm{MB} / \mathrm{s} \\ \text { (SuperSpeed) } \end{gathered}$	1.25 GB/s
	$\begin{aligned} & 1.5 \mathrm{MB} / \mathrm{s} \\ & \text { (Full } \\ & \text { Speed) } \end{aligned}$				2.5 GB/s (SuperSpeed+)

Unusual Thumb Drives

294

2000—Sony's Playstation 2 e

Playstation 2

- Priced at \$299 (\$441 today)
- Best selling home game console of all time; 155 million units sold
- $\sim 4,000$ games available; 1.5 billion copies sold
- Production ceased in 2013
- Current model Playstation 4 (\$300-\$400)

WikipediA The Free Encyclopedia

Wikipedia 요요

- Created by Jimmy Wales \& Larry Sanger - released January 15, 2001
- Owned by the Wikimedia Foundation*
- Funded by donations
- Many millions of articles in 301 languages
- Articles community posted and edited
- Criticisms—read all about it in Wikipedia
- and other sources © O
* A not-for-profit organization in San Francisco

Logarithmic graph of the $\mathbf{2 0}$ largest language editions of Wikipedia (as of 18 April 2019) ${ }^{[132]}$ (millions of articles)

$\stackrel{0.1}{\mid}$	0.3	1	${ }^{3}$
English 5,844,664			
Cebuano 5,322,442			

Swedish 3,748,706
German 2,291,406
French 2,097,530
Dutch 1,963,461
Russian 1,540,898
Italian 1,521,408
Spanish 1,516,327
Polish 1,331,981
Waray $1,263,537$
Vietnamese 1,205,756
Japanese 1,147,449
Chinese 1,050,814
Portuguese 1,002,419
Ukrainian 898,829

Encyclopædia Britannica $\sim 100,000$ articles (online) 2010 last print edition

Arabic 757,316
Persian 672,117
Serbian 618,611
Catalan 610,998

Facebook ee

Mark Zuckerberg (1984-)

Founders

Mark Zuckerberg
Eduardo Saverin
Andrew McCollum
Dustin Moskovitz Chris Hughes

Facebook

- 2004—established at Harvard University as online student directory with pictures
- 2004—most universities in U.S. \& Canada
- 2004—numerous lawsuits (settled in 2008)
- 2006—open to anyone at least 13 years old
- Evolved into a broad social network service
- 2012—IPO, largest initial valuation to date in 2012 ($\$ 104$ billion)
- 2018-2.2 billion active monthly users
- 2019—market capitalization $\$ 543$ billion

Facebook

- Controversies:
- Privacy
- Censorship
- Objectionable content
- Adverse psychological effects on young users
- Inadequate computer security
$\checkmark 100$ s of millions passwords stored as plain text
\checkmark September 2019—millions of customers private data stolen

2005 DARPA Grand Challenge rep

Defense Advanced Research Projects Agency

DARPA Grand Challenge

- Driverless car competition (2005)
- 113 miles alongside of Interstate 15, Barstow, California to Primm, Nevada
- 23 vehicles in the race-5 completed course
- Winning car "Stanley" in 6 hr, 54 min (16 mph)
- Stanford University
- VW Electronics Research Laboratory
- \$2 million prize

2006—Nintendo Wii 오ㅇㅗㅛ

Nintendo Wii

- 2006-7 $7^{\text {th }}$ generation released, price: $\$ 249.99$ (today \$316)
- 2006-first quarter 101 million units sold ($\$ 31.9$ billion revenue today's money)
- 2013—product discontinued
- Current product Nintendo Switch (~\$300)
- 2019—Nintendo still very active
- founded 1889 (playing cards)
- about 6,000 employees

62018 Newzoo

Global movie industry (2018) \$41.1 billion

Bitcoin epe

Established January 9, 2009

Bitcoin*

- Created by Satoshi Nakamoto (a pseudonym)
- A traceless, electronic cash payment system
- distributed on many computers
- a public ledger recording who owns each unit of available Bitcoin (blockchain technology)
- money transfer: debit one owner and credit another owner
- Owners are registered as an alias string of characters (public address)
- Proof of ID/ownership accomplished by public/private key cryptography
* aka a cryptocurrency

Bitcoin (cont.)

- Potential maximum of 21 million Bitcoins in existence (think world's gold supply)
- Increasing the Bitcoin supply is complex and unlikely to occur in the foreseeable future
- 4.3 million Bitcoins remain to be identified
- Bitcoin identification is called "mining"
- There are rules limiting the number of Bitcoins that can be annually "mined"

Bitcoin Mining

- Successful identification accrues a Bitcoin

- Mining requires:
- considerable computer resources
- large quantities of electricity consumed for computing and cooling
\checkmark world-wide electricity consumption for mining equal to 1.1% of U.S. annual electricity production
$\checkmark \sim 50$ TWh (50 billion kWh) \checkmark at a cost of $\$ 6.25$ billion

Bitcoin Criticisms

- High electricity consumption from mining
- Illegal transactions by criminals
- Price volatility of Bitcoin
- Considerable speculation
- Thefts from exchanges*
- Threat of an economic bubble
* CNN reported May 8, 2019 that hackers had stolen $\$ 40$ million worth of Bitcoin

Value of Bitcoin in U.S. Dollars e (April 2017 to April 2019)

California Gold Rush of 1849

Bitcoin Rush of 2017-18

An Unintended Consequence

Bitcoin miners caused worldwide shortage of GPUs

2010s

World's Smallest Computer

grain of rice

Computer \uparrow

The Michigan Micro Mote요ㅇㅛㅛ

- Created at the University of Michigan in 2015
- 0.3 mm on a side
- All data and programs lost when turned off
- CPU—Phoenix processor
- RAM (amount?)
- Solar cells
- Wireless transmitter

Some Gloomy Stuff...

Remember the Morris Worm?

The Stuxnet Worm

- Some uncertainty "whodunit"
- Probably created and released by U.S. and Israel governments
- 2010—discovered by Sergey Ulasen at Kaspersky Labs in Moscow
- Worm targeted Siemens industrial control systems used in uranium enrichment processes
- Probably destroyed ~ 1000 centrifuges used to enrich U^{235} in $U F_{6}$

The Stuxnet Wormere

Uranium enrichment facilities, Natanz, Iran

Heartbleed Attack 오요

Heartbleed Attack

- Discovered in 2014
- Operates against protocols used to communicate between servers
- one part of which is called "Heartbeat"
- The malware allowed usernames and passwords, e-mails, documents and other sensitive information to be compromised
- ~500,000 Web servers affected

The Sony Hack 요요

- Discovered November 24, 2014
- duration unknown, at least two months
- Attacker "Guardians of Peace", probably North Korean government
- In retaliation against the anti-North Korean movie "The Interview" (a comedy)

The Sony Hack (cont.)

- About 100 TB of data stolen
- E-mails
- Salary of executives
- Financial information
- Social Security numbers
- Medical information
- Celebrity gossip
- Several unreleased movies
- 2015—about 30,000 documents released to Wikileaks

Your Credit, Your Identity.

unts

Stay in control with our individual and family plans.

Equifax Complete ${ }^{\text {TM }}$
Premier
\checkmark Equifax 3-Bureau credit scores
\checkmark Equifax 3-Bureau credit scores
\checkmark 3-Bureau credit report monitoring ${ }^{1}$
\checkmark Social Security Number scanning ${ }^{2}$
Add a second_Adult (all Premier features)
Equifax credit monitoring for up to 4 children
\checkmark 3-Bureau credit report monitoring ${ }^{1}$
\checkmark Social Security Number scanning ${ }^{2}$
\checkmark Add a Second Adult (all Premier features)

20
201
201
201
19!

Ye
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
$19!$

Impacted by the federal government partial shutdown? Take action and learn more here.

	FEATURED PRODUCT
Equifax Complete ${ }^{\text {TM }}$	Equifax Complete ${ }^{\text {TM }}$
Premier	Family Plan
\checkmark Equifax 3-Bureau credit scores	\checkmark Equifax 3-Bureau credit scores
\checkmark 3-Bureau credit report monitoring ${ }^{1}$	\checkmark 3-Bureau credit report monitoring ${ }^{1}$
\checkmark Social Security Number scanning ${ }^{2}$	\checkmark Social Security Number scanning ${ }^{2}$
Add a second Adult (all Premier features)	\checkmark Add a Second Adult (all Premier features)
Equifax credit monitoring for up to 4 children	Equifax credit monitoring for up to 4 children
\$10 95/month	\$ $95 /$ month

ExTRM: ETRMM

Year	Supercomputer	Peak speed (Rmax)	Location
1993	Fujitsu Numerical Wind Tunnel	124.50 GFLOPS	$\leqslant 124.5 \times 10^{9} \ldots 124$ billion
1993	Intel Paragon XP/S 140	143.40 GFLOPS	DoE-Sandia National Laboratories, New Mexico, USA
1994	Fujitsu Numerical Wind Tunnel	170.40 GFLOPS	National Aerospace Laboratory, Tokyo, Japan
1996	Hitachi SR2201/1024	220.4 GFLOPS	University of Tokyo, Japan
	Hitachi CP-PACS/2048	368.2 GFLOPS	University of Tsukuba, Tsukuba, Japan
1997	Intel ASCI Red/9152	1.338 TFLOPS	DoE-Sandia National Laboratories, New Mexico, USA
1999	Intel ASCI Red/9632	2.3796 TFLOPS	
2000	IBM ASCI White	7.226 TFLOPS	DoE-Lawrence Livermore National Laboratory, California, USA
2002	NEC Earth Simulator	35.86 TFLOPS	Earth Simulator Center, Yokohama, Japan
2004	IBM Blue Gene/L	70.72 TFLOPS	DoE/IBM Rochester, Minnesota, USA
2005		136.8 TFLOPS	DoE/U.S. National Nuclear Security Administration, Lawrence Livermore National Laboratory, California, USA
		280.6 TFLOPS	
2007		478.2 TFLOPS	
2008	IBM Roadrunner	1.026 PFLOPS	DoE-Los Alamos National Laboratory, New Mexico, USA
		1.105 PFLOPS	
2009	Cray Jaguar	1.759 PFLOPS	DoE-Oak Ridge National Laboratory, Tennessee, USA
2010	Tianhe-IA	2.566 PFLOPS	National Supercomputing Center, Tianjin, China
2011	Fujitsu K computer	10.51 PFLOPS	RIKEN, Kobe, Japan
2012	IBM Sequoia	16.32 PFLOPS	Lawrence Livermore National Laboratory, California, USA
2012	Cray Titan	17.59 PFLOPS	Oak Ridge National Laboratory, Tennessee, USA
2013	NUDT Tianhe-2	33.86 PFLOPS	Guangzhou, China
2016	Sunway TaihuLight	93.01 PFLOPS	Wuxi, China
2018	IBM Summit	122.3 PFLOPS	$122.3 \times 10^{15}-122 \text { m m}^{33} \text { illion billi }$

Factors Affecting CPU Performance

- Clock speed
- Number of transistors
- Cache memory (L1, L2, L3...)
- Number cores
- Lithographic scale*
- Other factors...
* For silicon, at approximately 2 nm, quantum tunneling becomes an issue

Advances in CPUs

CPU Model	Year	Cores	Threads	Clock Speed	Number Transistors	Price
Intel 4004	1971					
Intel Core i9- 9900K	2018					

- The Core $99-9900 \mathrm{~K}$ is an upper-end CPU used in desktop computers
- By-the-way, the AMD Ryzen Epyc has 19.2 billion transistors-largest number on a single CPU chip

Change in Prices of Cars?

Change in Prices of Disk Drives?

2019

Price of Storage in 1979

75 MB hard disk drive
\$12,500 (1979)
$\$ 43,200$ in today's money

4 TB HDD in 2019
$\$ 69.95$

Price per Terabyte

75 MB HDD in 1979
\$576,000,000/TB in today's money

4 TB HDD in 2019
\$17.50/TB

Imagine

If the price of cars had paralleled the price of disk drives...

If Car Prices Paralleled HDD Prices

Price ~\$4,000 \$14,900 in 2019 dollars

\$0.000450
 2,223 cars/\$

A Peek Into the Future

Be patient-this is relevant to computers!

Deoxyribonucleic Acid... aka DNA

DNA Nucleotide Pairing

What Has Been Stored in Synthetic DNA?

- The word "hello"
- A movie (22 MB)
- Tolstoy's War and Peace
- A computer operating system
- All of Wikipedia in English (16 GB)
- Various bits and pieces...

Useful Properties of DNA

- Massive storage capacity: ~200,000 TB in 1 gram of DNA
- Durable for thousands of years
- Challenges:
- Very expensive
- Slow to encode and decode
- For more information see ge日e日

Thanks for listening!
 Finally!
 He's done!

