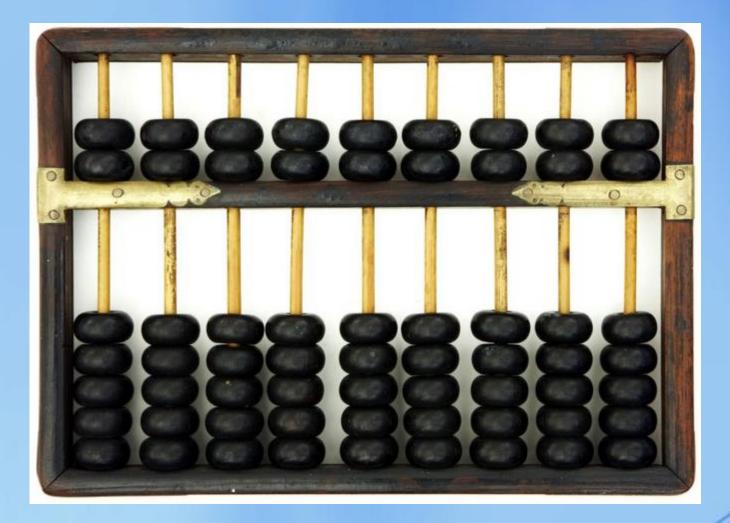
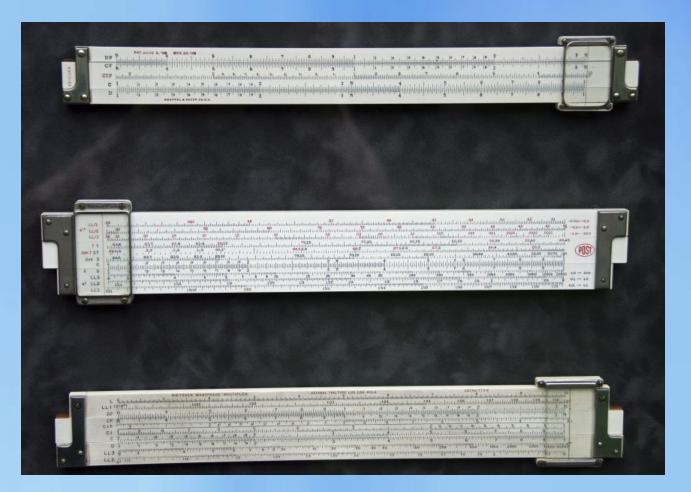
80 Years of Computer History Lorrin R. Garson

Lifetime Learning Institute of Northern Virginia Summer 2019

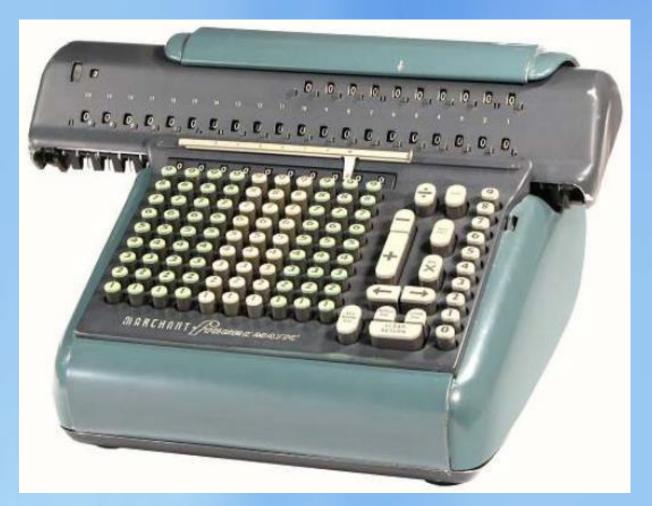

> Lecture 1 of 3 August 22, 2019

© 2019 Lorrin R. Garson


Course Outline

- Why 80 years?
- Events presented chronologically
- Prominent contributing individuals
- A little rudimentary math
- Relevant contemporaneous historical events
- Often "the first" is difficult to determine
- Conflicting dates are sometimes reported
- My apologies for the inevitable errors!

Before Computers — There Were Computers ...



4

Harvard's Computers (~1919)

URL ******** Williamina Fleming

Before Computers — There Were Computers

Human Computers at NASA 1950s & 60s

What is a Computer? (As We Know It Today)

An electronic device

for storing and processing data,

typically in binary form,

according to instructions given to it in a variable program

Types of Computers

- PCs
- Tablets
- Smartphones
- Hand-held Calculators
- Minicomputers

- Workstations
- Servers
- Mainframes
- Supercomputers
- Internet of Things (IoT)

PCs

- Used by individuals
- \$200 to \$3,000
- Used for:
 - E-mail
 - "Surfing" the Web
 - Office automation (Word, PowerPoint, Excel, etc.)
 - Photo/video editing
 - Gaming

Minicomputers

- Midrange machines
 PC < Mini < Mainframe
- Multiuser
- \$20,000 to \$100,000
- Attached to other devices
 - CAT scanners
 - X-ray refractormeters
 - Mass spectrometers
- Replaced by workstations

Workstations

- "Super" PCs
- \$5,000 to \$20,000
- Individual users
- Networked
- Used for:
 - CAD/CAM applications
 - Video editing
 - Music production
 - Data analysis

Servers

- Provide storage and services for other networked computers
- \$400 to \$4,000
- Types:
 - Application servers
 - Database servers
 - Printer servers
 - DNS servers

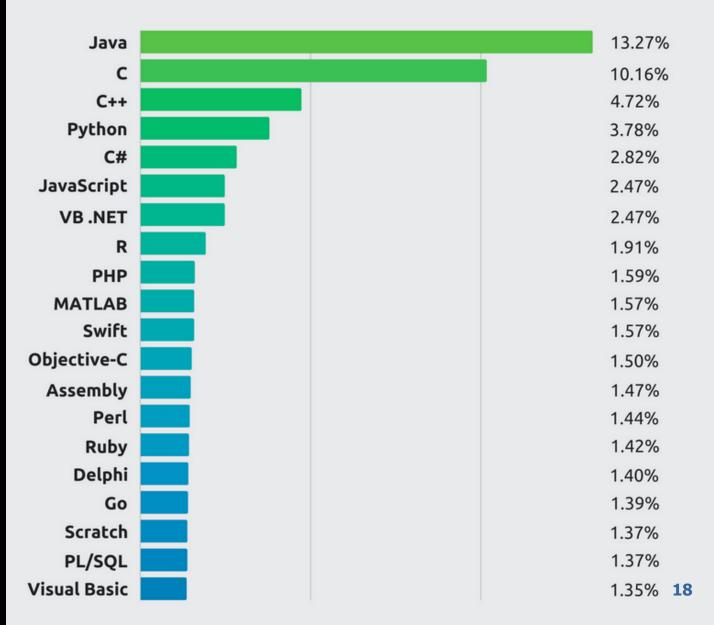
- Businesses
 - Banking
 - Insurance
 - Health care
 - Inventory control
 - E-commerce
- Governments
 - Military
 - IRS
 - Social Security

Mainframes*

- Large enterprise computers \$75,000 to millions
- High availability & redundancy
- Hot swapping of components
- Backward compatible software
- Thousands simultaneous users
- High transaction throughput
- Large storage capacity

IBM's "Intrepid" 165,000 CPUs

Supercomputers


- Extreme numeric performance
 \$100 to \$250 million
- 1000s CPUs
- Many/most use Linux
- Used for:
 - Weather forecasting
 - Molecular modeling
 - Weapons design
 - Quantum mechanics
 - Petroleum exploration

Software

- A collection of instructions that tell a computer what to do
- Types
 - System, including operating systems
 - Applications (apps), aka programs
 - Utilities
- Approximately 500-2,000 active programming languages

Top Programming Languages

Tiobe Index - December 2017

• In the BASIC language (1964)

10 PRINT "Hello World!" - source code

The result? Hello World!

Software

In the "C" language (1972)

```
/* A "C "program to print Hello World! */
#include <stdio.h>
int main()
{
    printf ("Hello World!\n");
    return 0;
}
```

The result? Hello World!

In the C++ language (1979)

#include <iostream>
int main ()
{
 std::cout << "Hello World";
}</pre>

The result? Hello World

In the Java language (1995)

public class Hello {
 public static void main (String [] args) {
 System.out.println ("Hello World");
 }
}

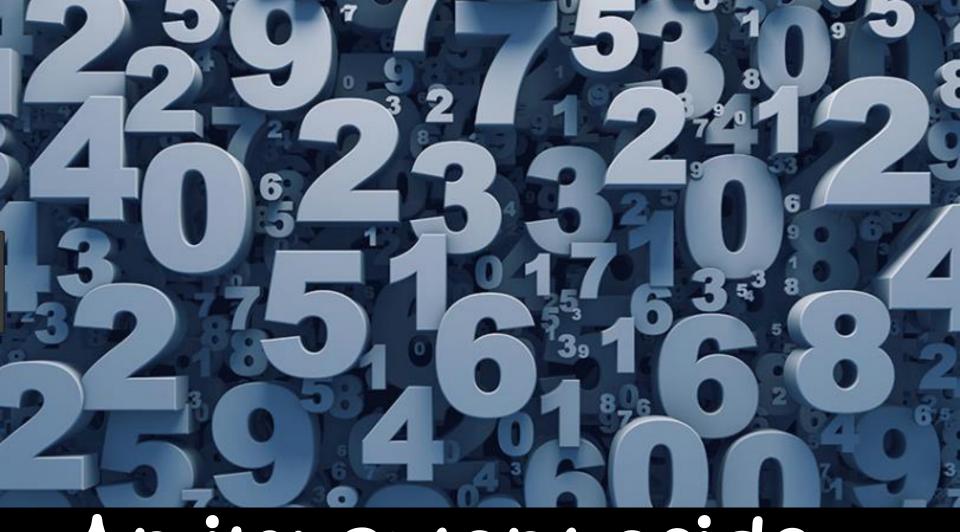
The result? Hello World

• In the FORTRAN language (1957)

PROGRAM HELLOWORLD 10 FORMAT (1X, 11HHELLO WORLD) WRITE (6,10) END

The result? Hello World

In the COBOL language (1959)


IDENTIFICATION DIVISION. PROGRAM-ID. Hello. ENVIRONMENT DIVISION. DATA DIVISION. PROCEDURE DIVISION. Display 'Hello World!'. STOP RUN.

The result? Hello World!

• IBM 360/370/390 BAL (Basic Assembler Language, 1964)

```
// EXEC ASSEMBLY
      START
MAIN BALR 2,0
      USING *.2
      OPEN PRINT
      MVC BUF,HW
      PUT PRINT
      CLOSE PRINT
      EOJ
HW DC CL132 'HELLO WORLD'
BUF DS CL132
PRINT DTFPR IOAREA1=BUF, DEVADDR=SYSLST, BLKSIZE=132,
            DEVICE=3203,CONTROL=YES,PRINTOV=YES
     END MAIN
/*
// EXEC LNKEDT
// EXEC
         The result? Hello World
/*
/&
```

Let's Talk Numbers

An important aside...

Babylonian Numbers

* YY 22 Y 23 🕷 **% *** · *** ¥¥ ₩¥ ₩ YYY Æ

"Modern Babylonian Numbers"

• Time

- 60 seconds/minute
- 60 minutes/hour
- Mathematics
 - 360° in a circle
 - trigonometric functions
- Geography/Navigation
 - 38° 52' 38" N 77° 17' 20" W

1, 2, 3, 4, 5, 6, 7, 8, 9...

What about ten? What about zero?

Basic Modern Arithmetic

Symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

999 Nine hundred and ninety-nine
▲ ▲ ▲
nine hundreds PLUS
nine tens PLUS
nine "things"

Basic Modern Arithmetic (cont.)

Symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

101₁₀ One hundred and one One hundred PLUS zero tens PLUS 1 "thing" 10² 10¹ "things" 1 one (100s) 10s) 1 zero (10s) 1 count of things

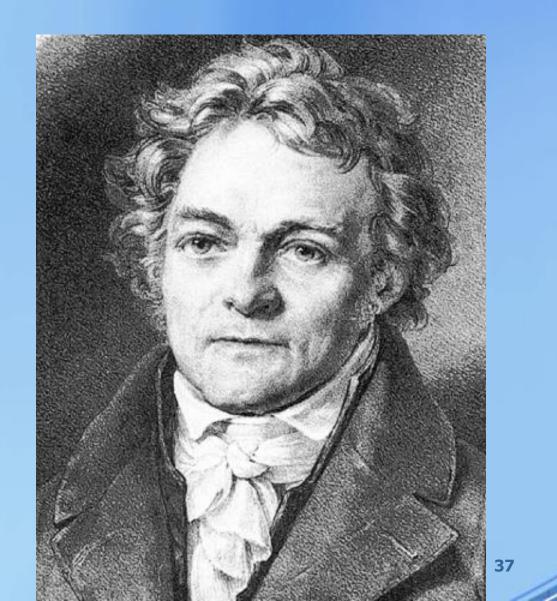
...10¹⁰⁰⁰.....10⁴ 10³ 10² 10¹ "0→9 things"

Basic Computer Arithmetic

Symbols: 0 and 1 (binary)

101₂ Equal to five in decimal (4 + 0 + 1 = 5) $\uparrow^{a ``1''}$ $\uparrow^{Zero twos}$ $\uparrow^{One four}$

... 2^7 2⁶ 2⁵ 2⁴ 2³ 2² 2¹ 0 or 1 Decimal 128 64 32 16 8 4 2 0 or 1 1111111₂ = 128+64+32+16+8+4+2+1 = 255₁₀ Base 60: ...60⁴ 60³ 60² 60¹ 1 \rightarrow 60 Base 12: ...12⁴ 12³ 12² 12¹ 1 \rightarrow 12 34


	Letter	ASCII Code	Binary	Letter	ASCII Code	Binary	
American	а	097	01100001	А	065	01000001	
	b	098	01100010	В	066	01000010	
<u>S</u> tandard	С	099	01100011	С	067	01000011	
Code for	d	100	01100100	D	068	01000100	
	е	101	01100101	E	069	01000101	
Information	f	102	01100110	F	070	01000110	
Interchange	e g	103	01100111	G	071	01000111	
<u>_</u>	h	104	01101000	Н	072	01001000	
ASCII	ch	narac	cter	"9	" = 0	01110	01
Numh	OK	0		740	101	01001100	
Numb	er	9 = (JI		01001101	
	n	110	01101110	Ν	078	01001110	
	0	111	01101111	0	079	01001111	
	р	112	01110000	Р	080	01010000	
	q	113	01110001	Q	081	01010001	
		114	01110010		000	01010010	

0	111	01101111	0	079	01001111
р	112	01110000	Р	080	01010000
q	113	01110001	Q	081	01010001
r	114	01110010	R	082	01010010
s	115	01110011	S	083	01010011
t	116	01110100	Т	084	01010100
u	117	01110101	U	085	01010101
V	118	01110110	V	086	01010110
w	119	01110111	W	087	01010111
х	120	01111000	Х	088	01011000
У	121	01111001	Υ	089	010110035
z	122	01111010	Ζ	090	01011010

Foundations of the Modern Computer

Alois Senefelder (1771-1834)

Alois Senefelder

- Actor, playwright, engineer, inventor
- Invented stone printing (Steindruck) 1796

 to print his plays
- Lithography (from the French)
- 1818—published "A Complete Course of Lithography"
 - currently available on Amazon.com (free)

trchive of lithographic stones in Müncher

-Re-

2.0

17

32

Joseph Marie Jacquard (1752-1834)

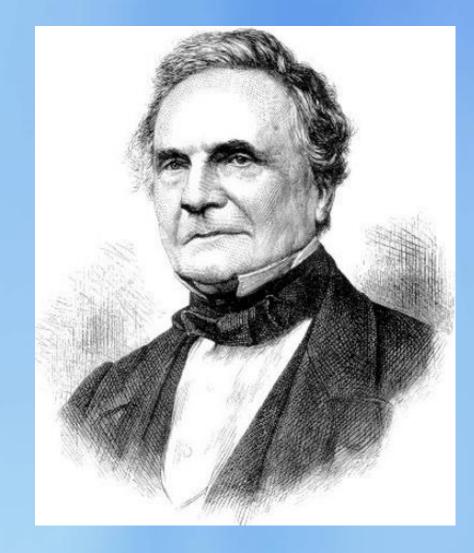
Science Museum London

Tapestry woven on Jacquard loom →

The Jacquard Loom

- Invented in 1804
- Punched cards activate hooks and rods on a loom to create intricate patterns
- Revolutionized weaving
 - greatly reduced labor costs
 - reduced price of intricate cloth
 - caused considerable civil unrest due to job loss

Jacquard loom


	T	T	-		-	-	-	-	П	T	-1	-	-	T	192.6	OUT	P		1	-	-	1012	T		985	L	-	-	1000	1000	-		-	185		144			-	100		-	T	_	-	-	1	3
PAGE	LINE	THE	FORM TV			ĩ	T	1	34	THE REAL PROPERTY.	AF	berone w	AFTER	1	IN	DIC	OTA	RS T	-		TIE		25.00 20.00	E	esi ni esi ni esi ni esi ni kécol	T 10					con	NST	ANT	1	on	50	r	wor	1	E.C.		1	Carl Inc.	SIGN		PE	twice twice	AM
) ()	60	0 0	0	0 0	0 (00	0	0 0	0	elo	0	1		T		H	0	0	0	8.8	0 1	0 0	80	00	00	00	0	0 0	8	0	0	0 1	8	0 0	0 0	0	0	0	0 0			0 0	0	0	0	0 0	0 0	0
1	1 1	11	1	11	1	1	1	11	1	11	1	1	1	1 1	11	1	1 1	1 1	2112	11	1	11	11	11	1	11	1	45 47		1 1	11	1	11	11	1 1	1 1	1	11	11	1 1	11	11	1	11	1	11	11	1
2	2 2	2 2	2	2 2	2 :	2	2	2 2	2	2 2	2	2	2	2 2	2 2	2 :	2 2	22	2	2	2 :	22	22	22	2 2	22	2	2	23	2 2	22	2 :	2 2	22	2 2	2 2	2 :	2 2	2		2 2	12	2	2 2	2	2	2 2	2
3 3		3 3	3	3 3	3	3 3		3 3	3	3 3	3	3 3		3 3	3 3	33	3 3	3 3	3	3	3	3 3	3 3	33	33	33	3	3	3	3 3	3	1	33	3 3	3	1	1	33	3 3	3 3	3 3	3 3	3	3 3	3	33	3 3	3
4 4	4	4	4	44	4	\$ 4	4	4	4	4 4	4	4.4	4	4	4 4			1	REF	POF	1			GR/	1/34 4M	SO GE	NE	RAT	TOR	2			1	1	4	4 4	4	44	4.4	4 4	44	44	4	4 4	4	44	4 4	1
5 5	5 5	5	5	5 5	5 !	5 5	5	5	5	5 5	5	5 5	5	5	5 5	-	(דטמ	PU	T-	FC	RN	TAT	s	PEC	IF	CA	TI	ON	IS			55	5 5	5 5	5 5	5	5	5	5 5	5 5	5 5	5	5	5	5 5	5	5
6 6	5 8	6 6	6	5 6	6 1	3 6	8	6 6	8	6 6	8	6 8	6	6	5	5 8	6 6	6 6	8	56	6 1	5	66	66	58	1	6	66	58	5 6	6 6	6	66	6 6	66	6 6	6	6	6 6	6 6	5	6	6	6 6	6	6	6 6	6
11	71	11	7	7	1	17	7	17	7	1	7	77	77	17	7	77	17	11	7	77	1	17	17	77	7	77	1	77	71	17	77	7	11	11	77	77	7	77	11	7	7	77	1	7		11	17	7
8	8 8	8 8	8	8	8 1	8 8	8	8 8	8	8	8	8 8	8	8	8 8		8 8	88	8	8 8	8 8	8 8	8	88		88	8	8 8	8 4	8 8	8			U	1		L		l	L	1	l	ŀ		11	11	8	8
9 9	9 5	9 9	9	9 9		9	\$	3 9	9	9 9		9 9	9 9	9 9 9	9 9	9	9	99	9 9	9 9	9 9	9 9	9 9	C	9 9	9 9	9	99	9 9	9 9	9 9	9	9 9	9 :	9 9	9 9	9	9 9	9 9	9	5 9	9 1	9 9	9 9	9	9 9	9 9	9 9

Museum of Science and Industry Manchester, England

Charles Babbage (1791-1871)

								LOGA	RITHM	5													11		LOGAL	RITHM	5								
200						1			1					Dis			1.00	-	1						-			-				Hitter	inces	1	
_	0	3	E 3	2	3	4	5		7	8	9	1	2 3	4	5 0	•	7 8 9		0	1	3	3	4	5	6	7		9	1	2	3	4 5	6	7	8 9
10	0000	00	43 0	086	0128	0170	0 021	2 0253	0294	033	6 0374	4	8 12	17	21 2	5 2	29 33 37	55	7404	7412	2415	9 2427	7435	744	3 7451	7459	746	5 7474	1	2	2	3 4	1.5	5	6 7
11 12 13 14 15	0414 0792 1139 1461 1761	08 11 14	28 0 73 1 92 1	864 206 523	0531 0899 1239 1553 1847	0934 1271 1584	130	7 0545 9 1004 3 1335 4 1644 3 1931	1038 1367 1673	139	9 0755 2 1106 9 1430 3 1732 7 2014	333	8 11 7 10 6 10 6 9 6 8	14 13 12		193	26 30 34 24 28 31 23 26 29 21 24 27 20 22 25	56 57 58 59 60	7559 7634 7709	7566 7642 7716	7574 7640 7721	7 7505 4 7582 9 7657 3 7731 6 7803	7589 Te64 7738	759 767 774	0 7528 7 7604 2 7679 5 7752 8 7625	7612 7686 7760	761 769 776	3 7551 9 7627 4 7301 7 7774 9 7846	1	2	2	3 3 3 3 3 3	1 4		67776 6666 666
16 17 18 19 20	2041 2304 2553 2788 3010	23 25 28		3.	2122 2380 2625 2856 3075	2403		5 2201 0 2455 1995 1923 1923	2227 2480 2718 2945 1160	225.	2279	32	5 54	11 10 9	13 1	65	18 21 24 7 20 72 6 19 6 18 0 6 17		7853 7924 7024 802	7860 7931	7868 7938 8007 8007 8143	7875	7882 7952	788 195 107 10 10	9 7896 9 7905 9 7905 9 7905 9 7905 9 7905 9 7905 9 7905	7903 7578 6000 5100	7910 7988 810 19	0 7917 0 7997 8102 8102 8102				333			666655
****	3222 3424 3617 3802 3979			464	3284 3483 3474 92	2.500	3.0	4 3345 1 3541 1 1729 1 1729 1 1729	3560	157	3404 3598 3784 312 413	2 2 7 1 2	444	88717	10 11			te	#195 #261 \$151 \$88 \$5	8202 8257 833 83 83 83 84	8274	9 8215 4 8280 8344 9 8349 9 800	8287	329	8235 8299 8299 8263 8263 8263 8263 8263 8263 8263 8263	\$335	8312	8254 2 8319 9382 845 826				3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4	4	5 6 6 6 6
25 22 28 29 39	4150 4314 4472 4624 4771	43 44 40	30 4 87 4 39 4	346 502 654	4200 4362 4518 4569 4814	4378 4533 4683	439	2 4249 3 4409 8 4564 8 4713 3 4857	4265 4425 4579 4728	428 444 459 474	4298 4456 4609 4757 5 4900	2221	3 5 5 3 3 4	7 6 6 6	8887	9 1	11 13 15 11 13 14 11 12 14 10 12 13 10 11 13	71 72 73 74 75	8513 8573 8633	8579 8639 8698	8525 8585 8645 8704	5 8331 5 8591 5 8651 4 8710 2 8768	6	100	8549 8579 8579 8579 8785	8555 8615 8793	856 862 819	8567 888 888 7 8802	a	b	NNNNN	50	ţ	ję	*****
31 33 34 35	4914 5051 5185 5315 5441	50 51 53	65 5 98 5 28 5	079 211 340	4955 5092 5224 5353 5478	5105 5237 5366	511 525 537	3 4997 9 5132 0 5263 8 5391 2 5514	5145 5276 5403	5159 528 5410	4 5038 9 5172 9 5302 5 5428 9 5551	t	34334	5 5 5	0	8 8 8	9 11 12 9 11 12 9 10 12 9 10 13 9 10 11 9 10 11	76 77 78 79 80	8865	8571 8927 8982	8874 8932 8987	5 8825 5 8882 2 8938 7 8993 2 9047	8887 8943 8998	8991 8945 9004	7 8842 3 8899 4 8954 4 9009 8 9063	8904 8960 9015	8910 8963 9020	4 8859 5 8915 5 8971 5 9025 4 9079	1			222222	1.3	4	54444
36 37 38 39 40	5563 5682 5798 5911 6021	56 58 59	94 5 09 5 22 5	705 821 933	5599 5717 5832 5944 6053	5725 5843 5955	574 585 596	3 5635 0 5752 5 5866 6 5977 5 6085	5763 5877 5988	517. 5881 5999	8 5670 5 5786 8 5899 9 6010 7 6117		2 3 3 3 3 3	5 4	6 5	7 7 7 7	8 10 11 8 9 10 8 9 10 8 9 10 8 9 10 8 9 10	81 82 83 84 85	9191 9243	9543 9196 9248	9149 9201 9253	5 9101 9 9154 9306 3 9258 1 9309	9159 9212 9263	9163 9213 9264	2 9117 5 9170 7 9222 9 9274 9 9325	9175 9227 9279	9188 9230 9284	8 9133 0 9186 2 9238 4 9289 5 9340	1		11 IF IF IF IF IF			4	44444
41 42 43 44 45	6128 6232 6335 6435 6532	62 63 64	43 6 45 6 44 6	253 155 454	6160 6263 6365 6464 6561	6274 6375 6434	628 638 648	0 6191 4 6294 5 6395 4 6493 0 6590	6304 6405 6503	631 641 651	2 6222 4 6325 5 6425 3 6522 3 6618	1	2 3 3 3 3 3 3 3 3	4	5	6	7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9	86 87 88 89 90	9395 9445	9400 9450 9499	9403 9453 9504	5 9360 5 9410 5 9460 4 9509 2 9557	9415 9465 9513	9431 9465 9515	9375 9425 9474 9474 8 9523 9571	9430 9479 9528	943) 948- 953	5 9390 5 9440 4 9489 1 9588 1 9586	10000	1	2 = 2 = 1	NNNNN	1 3		4 4 4 4 4 4 4
46 47 48 49 50	6628 6721 6812 6902 6990	67. 68 69	30 6 21 6 11 6	739 830 920	6656 6749 6839 6928 7016	6758 6848 6933	676 685 694	5 6684 7 6776 7 6866 6 6955 3 7042	6785 6875 6964	679	2 6712 4 6803 4 6893 2 6981 9 7067		222222	4	34	5 5 5 5	77777	91 92 93 94 95	9685	9643 9689 9736	9647 9694 9741	0 9605 7 9652 4 9699 1 9745 5 9791	9657 9703 9750	9561 9708 9754	4 9619 1 9556 5 9713 4 9759 9 9805	9678 9717 9763	967) 972) 976)	8 9633 5 9680 2 9727 8 9773 8 9818		1		222227		3	*****
51 52 53 54	7076 7160 7243 7324	71 72	68 7 51 7	177	7101 7185 7267 7348	7193	720	8 7126 2 7210 4 7292 4 7372	7218	722	3 7152 6 7235 8 7316 8 7396	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3	-	5	6 7 8 6 7 7 6 6 7 6 7	96 97 98 99		9872 9917	9877 9921	2 9836 7 9881 9926 9959	9886 9930	9993/ 993/	5 9850 9994 9939 9983	9899 9943	9900 9948	99863 99808 99952 99996	0		1			1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
-	0	-		2		4	5	6	7		,	1	2 3				7 8 9	-	0	1	2	3	4	5	6	7	8	9		2	3	4 5	6	7	8 9
2									-		1	-		-		-	-	-	-		T				-		1				-		1		3

.

45

The Difference Engine—1821

- Created values for:
 - logarithms
 - trigonometric functions, etc.
 - using the method of finite differences in evaluating polynomials
- Sample polynomial: $f(x) = 2x^4 5x^3 + 2x^2 + 17$
- Could compute 31-digit values for polynomials with terms up to X⁷
- 1827—published accurate table of logarithms for 1 to 108,000

Replica Babbage's Difference Engine #1

Smithsonian National Museum Of American History

The Analytical Engine—1837

- A mechanical general purpose computer
- Fully programmable
- Components:
 - The mill (CPU)
 - The store 1,000 50-digit numbers (RAM/HDD)
 - The reader—punch cards (input/output devices)
- Steam driven
- Never built

"The Mill" Analytical Engine

The Computer History Museum Mountainview, California

The Analytical Engine, had it been built to Babbage's plans in the early 1840s.

ANALYTICAL ENGINE Plan 25.

1. The Store (hard disk, or memory). 2. The Mill (Central Processing Unit). 3. Steam Engine (power). 4. Printer (printer, round the other side). 5. Operation Cards (the program), 6. Variable Cards (Addressing system) 7. Number Cards (for entering numbers). 8. The Barrel Controllers (microprograms).

Sydney Padua

Babbage's Other Accomplishments

- Mathematician
- Reformed the British post office
- Pioneer in field of actuarial science
- Discovered weather of past years could be ascertained from tree rings
- Invented the cow catcher

Ada, Countess of Lovelace

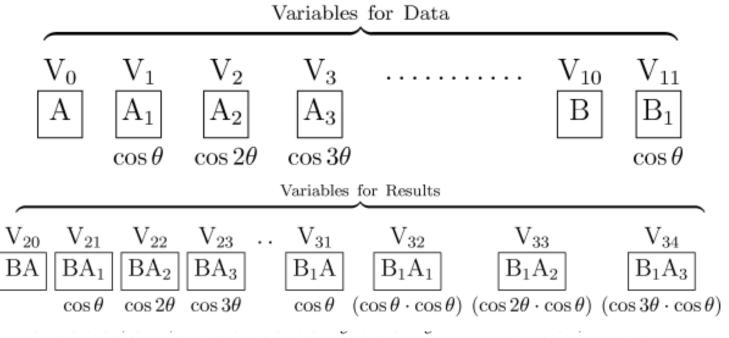
From "The Innovators" by Walter Isaacson, Simon & Shuster, 2014

Ada Lovelace

- Daughter of the poet Lord Byron
- A gifted mathematician
- Life-long friend of Charles Babbage
- 1980—the DoD named a computer language "Ada" in her honor

* Became Prime Minister of Italy in 1867

Congress of Italian Scientists*


- Charles Babbage gave presentation on his Analytical Engine
- Menabrea took notes and published "Sketch of the Analytical Engine Invented by Charles Babbage" (1842)
- Ada Lovelace translated the article and appended "Notes by the Translator"
- "Notes by the Translator" becomes famous

To return to the trigonometrical series. We shall only consider the first four terms of the factor (A + A₁ cos θ + &c.), since this will be sufficient to show the method. We propose to obtain separately the numerical value of *each* coefficient C₀, C₁, &c. of (1.). The direct multiplication of the two factors gives

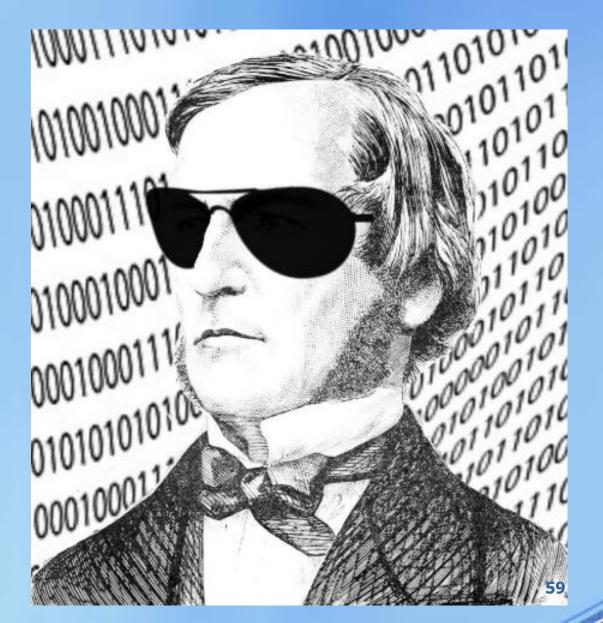
```
 BA + BA_{1}\cos\theta + BA_{2}\cos2\theta + BA_{3}\cos3\theta + \dots \\ B_{1}A\cos\theta + B_{1}A_{1}\cos\theta \cdot \cos\theta + B_{1}A_{2}\cos2\theta \cdot \cos\theta + B_{1}A_{3}\cos3\theta \cdot \cos\theta 
 (2.)
```

a result which would stand thus on the engine:-

they have not in fact resolved the double problem which the question presents, that of *correctness* in the results, united with *economy* of time.

"Notes by the Translator"

Ada described an algorithm (program)
 to compute Bernoulli numbers


$$\frac{x}{\epsilon^x - 1} = \frac{1}{1 + \frac{x}{2} + \frac{x^2}{2 \cdot 3} + \frac{x^3}{2 \cdot 3 \cdot 4} + \&c.}$$

- Suggested the Analytical Engine could be used for things other than numbers
 - musical notes
 - symbols such as letters

George Boole (1815-64) 옾

"Cool Boole"

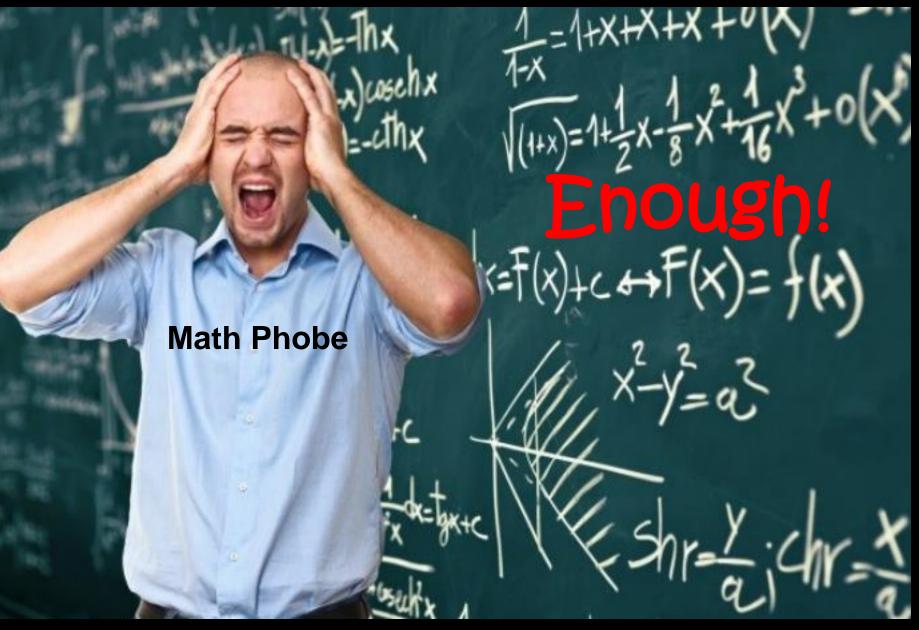
Boolean Algebra (1854)

- A branch of algebra that involves true and false values
 - T or 1 for true
 - F or 0 for for false

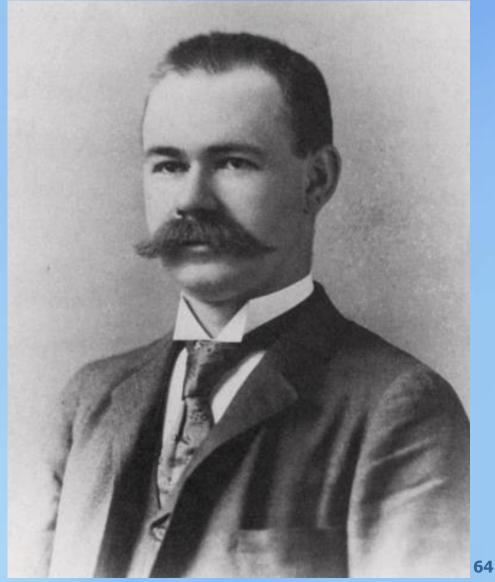
Boolean Algebra (cont.)

 The AND operator (symbolically: ∧) also known as logical conjunction requires both p and q to be True for the result to be True

р	q	pvd
Т	Т	Т
T	F	F
F	Т	F
F	F	F


1 = T or true 0 = F for false

Boolean Algebra (cont.)


 The OR operator (symbolically: v) requires only one value to be True for the result to be True

р	q	pvq
Т	Т	Т
T	F	Т
F	Т	Т
F	F	F

1 = T or true 0 = F for false

Herman Hollerith (1860-1929) 🔜 🔜

Herman Hollerith

- Degree in "Engineering of Mines" from Columbia University in 1879
- Ph.D. from Columbia in 1882
- Professor of mechanical engineering at MIT
- U.S. Census Bureau statistician
- Invented a electromechanical punched card sorter and tabulator

Hollerith's Tabulator and Sorter

Hollerith's Pantograph Punch

Hollerith's Punch Card

2 2 4 1 3 E 15 Off IS B D F b d f h IV SY X Fp Cn R X AI Cg Kg 3 0	1	1	3	0	2	4	10	On	s	A	с	E	a	с	е	g			EB	SB	Ch	Sy	U	Sh	Hk	Br	Rm	
A 1 1 1 0 25 A 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	2	2	4	1	3	E	15	Off	IS	в	D	F	b	d	f	h			SY	x	Fp	Cn	R	x	AI	Cg	Kg	
B 2 2 2 5 30 B 2	3	0	0	0	0	w	20	(Caral	1000	0.000	110 J. C.		1.1.200	ener si	0	0	0	0	0	0	0	0	0	0	0	0	0	
C 3 <th3< th=""> 3 3</th3<>	A	1	1	1	1	0	25	Α.	1	1 1 1 2 - 2	000.000		0.00 0.000	1	1	1	1	1	1	0	1	1	1	1	1	1	1	
D 4 4 4 1 4 D 4 6 6 6	в	2	2	2	2	5	30	в	2	2	0	2	2	10.0015	2	2	2	12.22 200	CARLON.	00822	0	2	2	2	2	2	2	
E 5 5 5 2 C E 5	c	3	3	3	3	0	3	C	3	3	3	0	3	3	3	3	3	3	'3	3	3	0	3	3	3	3	3	
F 6	D	4	4	4	4	1	4	D	4	4	4	4	0	4	4	4	4	4	4	4	4	4	0	4	4	4	4	
G 7 7 7 B E G 7 <th7< th=""> <th7< th=""> <th7< th=""></th7<></th7<></th7<>	E	5	Б	5	5	2	c	E	5	5	5	5	5	0	5	5	5	5	5	5	5	5	5	0	5	5	5	-
H 8 8 8 8 a F H 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	F	6	6	6	6	A	D	F	6	6	6	6	6	6	0	6	6	6	6	6	6	6	6	6	0	6	6	
	G	7	7	7	7	в	E	G	7	7	7	7	7	7	7	0	7	7	7	7	7	7	7	7	7	0	7	- State
1 9 9 9 9 b c 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	н	8	8	8	8	a	F	н	8	8	8	8	1	8	8	8	0	8	8	8	8	8	8	8	8	8	0	
	1	9	9	9	9	b	c	1	9	9	9	9	9	9	9	9	9	0	9	9	9	9	9	9	9	9	9	S.

First Mass Storage Device

(Most of the 1890 records destroyed by a fire at the Commerce Department in 1921)

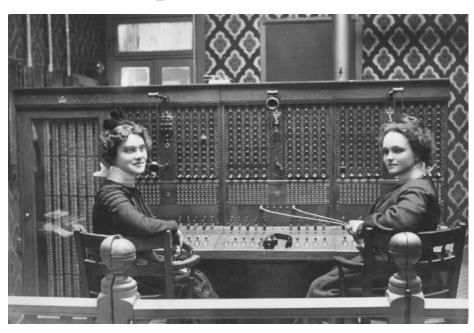
Counting the U.S. Population

- 1880 U.S. census took eight years to tabulate
- 1890 census took one year
- First major use of electrical circuits to process information

Tabulating Machine Company

- Formed by Hollerith in 1896
- With two additional companies evolved into the Computing-Tabulating-Recording Company (C-T-R) in 1911
- Evolved into International Business Machines (IBM) Corporation in 1924

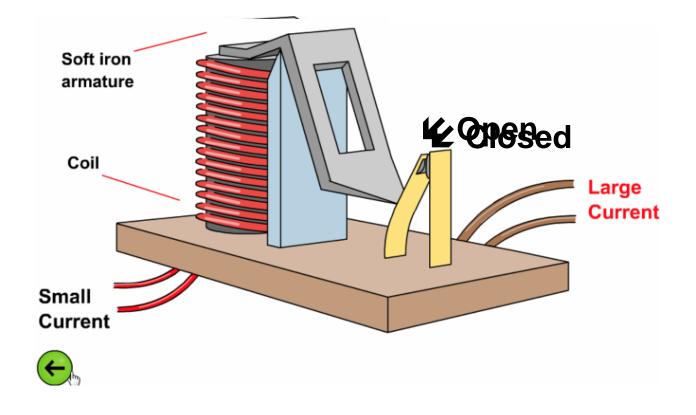
Foundations of the Modern Computer

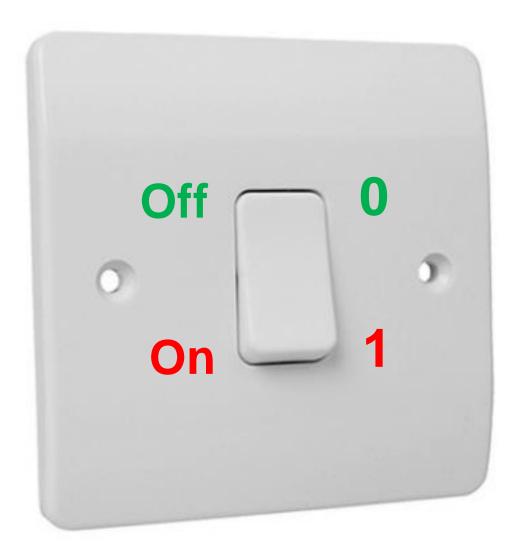

20th Century

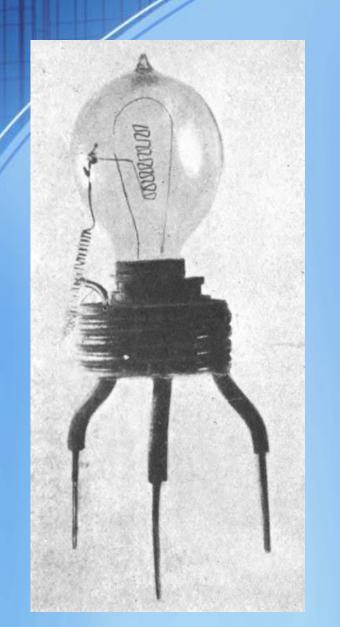
Telephone (cont)

Miss Crook or Miss Mickey (<u>switch</u> operators or operators)

Telephone (cont)






Electro-mechanical switching equipment ~1900

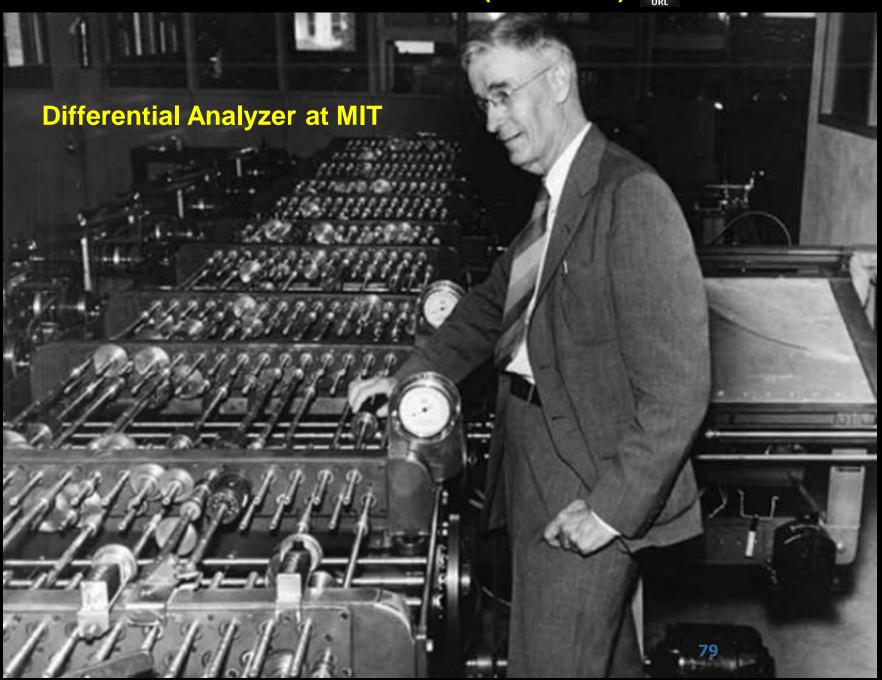
Simple Switch/Relay

Switching

Fleming's 1st Diode

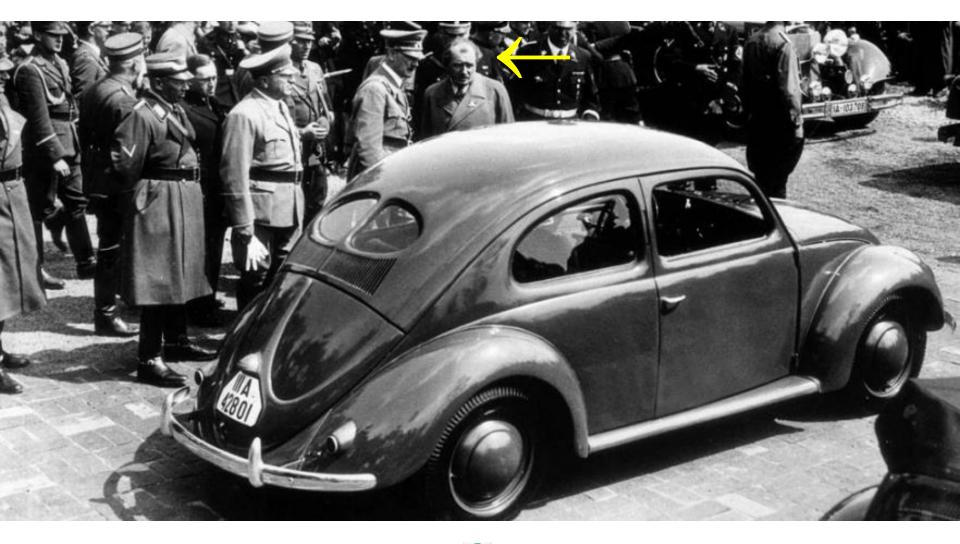
Vacuum Tube 옾 옾

- 1904—John Ambrose Fleming invented the diode
- 1906— Robert von Lieben receives a patent for the triode
- 1907— Lee De Forest improves (invents?) the triode
- 1913—AT&T bought De Forest's patent for \$50,000 (\$1.27 million in 2019)
- 1915—First U.S. coast-to-coast telephone call facilitated by vacuum tube amplifiers \$21/3min (\$522 in 2019)


1930s

Ford cars—a transportation metaphor

Vannevar Bush (1890-1974)



Differential Analyzer* (1928-31)

- World's first analog electrical-mechanical computer
- To solve differential equations by integration
- Could solve equations with up to 18 independent variables
- Subsequent Analyzer versions used to calculate artillery firing tables
- Influential in training and inspiring the next generation of computer pioneers
- * aka Continuous Integraph

1937—a Big Year in Computer Science

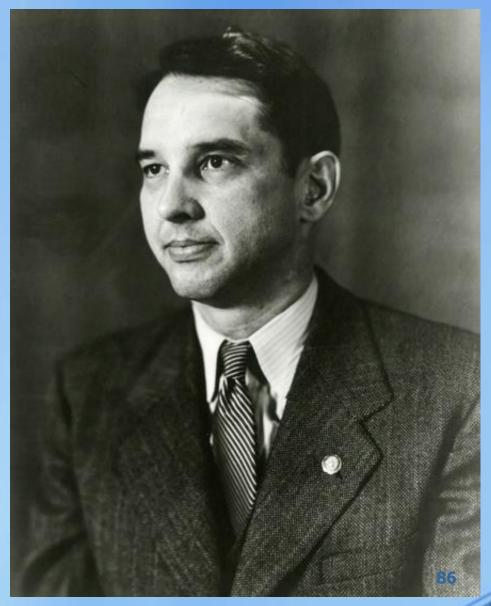
For the history of the VW "Beetle" see

Konrad Zuse (1910-95) 옾 옾

Konrad Zuse

- Design engineer—Henschel Flugzeug Werke
- 1935-37—created floating point binary mechanical calculator, the Z1
- 1940—Z2 a revised Z1 with telephone relays
- Employed movie film instead of paper tape
- 1941—Z3 the first fully (?) operational electromechanical digital computer

Konrad Zuse (cont.)


- 1945—computers and documentation destroyed in bombing attack on Berlin
- 1950—Z4 made public (very reliable)
- While working on the Z4 developed Plankalkül, the first high-level computer language
- IBM licensed several of Zuse's patents
- Founded several computer companies (Models Z1 through Z43)

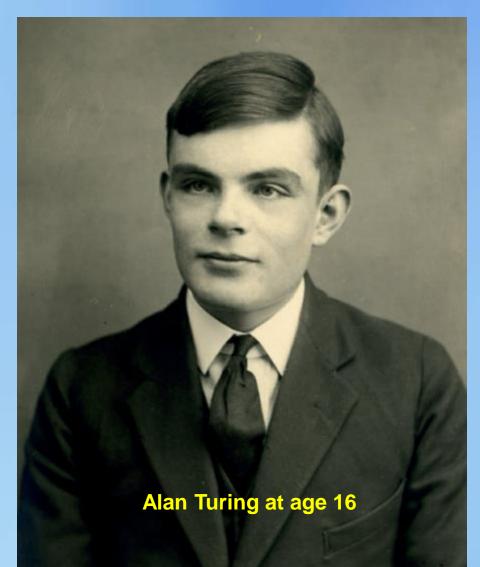
Konrad Zuse's Z3 (replica)

John Vincent Atanasoff 🔍 🏖 (1903-95)

John Atanasoff at Iowa State ~1940

From "The Innovators" by Walter Isaacson, Simon & Shuster, 2014

John Vincent Atanasoff


- Iowa State University, Ames
- Developed the Atanasoff-Berry computer (1937 into 40s)
 - "first" electronic digital computer
 - used vacuum tubes
 - used binary math
 - used Boolean logic
 - solve up to 29 simultaneous linear equations

Atanasoff-Berry Computer

- Computer obscure for many years (until 1960s)
- Rancorous lawsuits involving Mauchley and Eckert

Alan Turing (1912-54) 🖳 🔍 🔍

From "The Innovators" by Walter Isaacson, Simon & Shuster, 2014

Famous 1937 Mathematics Article

- Title: "On Computable Numbers, with an Application to the Entscheidungsproblem"
 - Proceedings of the London Mathematical Society, Vols 2-42, Issue 1, 1 January 1937, pp. 230-265
- Published at the age of 24
- Undoubtedly the most famous theoretical paper in the history of computing

Famous 1937 Mathematics Article (cont.)

- A mathematical description of a universal machine to solve any mathematical problem that can be presented in symbolic form
- Known as Turing's computer

- 1935—Fellow at King's College, Cambridge University
- 1937—Turing and John von Neumann discussed what would later be called "artificial intelligence"

230

A. M. TURING

[Nov. 12,

First page

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING.

[Received 28 May, 1936.-Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real numbers whose expressions as a decimal are calculable by finite means. Although the subject of this paper is ostensibly the computable *numbers*, it is almost equally easy to define and investigate computable functions of an integral variable or a real or computable variable, computable predicates, and so forth. The fundamental problems involved are, however, the same in each case, and I have chosen the computable numbers for explicit treatment as involving the least cumbrous technique. I hope shortly to give an account of the relations of the computable numbers, functions, and so forth to one another. This will include a development of the theory of functions of a real variable expressed in terms of computable numbers. According to my definition, a number is computable if its decimal can be written down by a machine.

In §§ 9, 10 I give some arguments with the intention of showing that the computable numbers include all numbers which could naturally be regarded as computable. In particular, I show that certain large classes of numbers are computable. They include, for instance, the real parts of all algebraic numbers, the real parts of the zeros of the Bessel functions. the numbers π , e, etc. The computable numbers do not, however, include all definable numbers, and an example is given of a definable number which is not computable.

Although the class of computable numbers is so great, and in many ways similar to the class of real numbers, it is nevertheless enumerable. In §8 I examine certain arguments which would seem to prove the contrary. By the correct application of one of these arguments, conclusions are reached which are superficially similar to those of Gödel[†]. These results

[†] Gödel, "Über formal unentscheidhare Sätze der Principia Mathematica und verwandter Systeme, I", Monatshefte Math. Phys., 38 (1931), 173-198.

1936.]

It may be proved that there is a formula V such that

$$\left\{\{V\}\left(N_{t(n+1)}\right)\right\}\left(N_{t(n)}\right) \begin{cases} \operatorname{conv} N_1 & \text{if, in going from the n-th to the $(n+1)$-th} \\ & \operatorname{complete configuration, the figure 0 is} \\ & \operatorname{printed.} \\ & \operatorname{conv} N_2 & \text{if the figure 1 is printed.} \end{cases} \right\}$$

| conv N_3 otherwise.

Let W_{γ} stand for

$$\lambda u \left[\left\{ \{V\} \left(\{A_{\gamma}\} \left(\{U_{\gamma}\} (u) \right) \right) \right\} \left(\{U_{\gamma}\} (u) \right) \right]$$

so that, for each integer n,

$$\{\{V\}(N_{\xi(n+1)})\}(N_{\xi(n)}) \operatorname{conv}\{W_{\gamma}\}(N_{n})\}$$

and let Q be a formula such that

 $\{\{Q\}(W_{\gamma})\}$ (N_s) conv $N_{r(z)}$,

where r(s) is the s-th integer q for which $\{W_{\gamma}\}(N_{q})$ is convertible into either N_{1} or N_{2} . Then, if M_{γ} stands for

$$\lambda w \left[\{W_{\gamma}\} \left(\{\{Q\} (W_{\gamma})\} (w) \right) \right],$$

it will have the required property †.

 \rightarrow

The Graduate College, Princeton University, New Jersey, U.S.A. Ph.D dissertation (Princeton) "Systems of Logic Based On Ordinals" (1938)

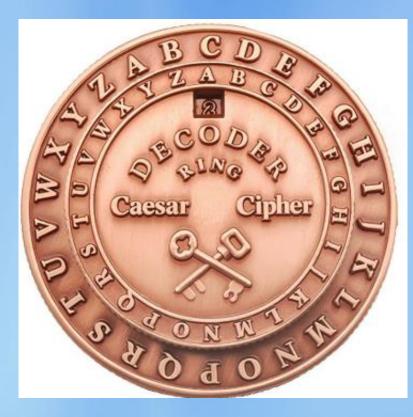
93

† In a complete proof of the λ -definability of computable sequences it would be best to modify this method by replacing the numerical description of the complete configurations by a description which can be handled more easily with our apparatus. Let us choose certain integers to represent the symbols and the *m*-configurations of the machine. Suppose that in a certain complete configuration the numbers representing the successive symbols on the tape are $s_1 s_2 \dots s_n$, that the *m*-th symbol is scanned, and that the *m*-configuration has the number t_i then we may represent this complete configuration by the formula

$$\left[[N_{s_{i}}, N_{s_{i}}, \dots, N_{s_{m-1}}], [N_{t}, N_{s_{m}}], [N_{\epsilon_{n+1}}, \dots, N_{s_{n}}] \right]$$

where

$$[a, b] \text{ stands for } \lambda u \left[\left\{ \left\{ u \right\} (a) \right\} (b) \right],$$


$$[a, b, c] \text{ stands for } \lambda u \left[\left\{ \left\{ \left\{ u \right\} (a) \right\} (b) \right\} (c) \right],$$

etc.

Last page

Cryptography

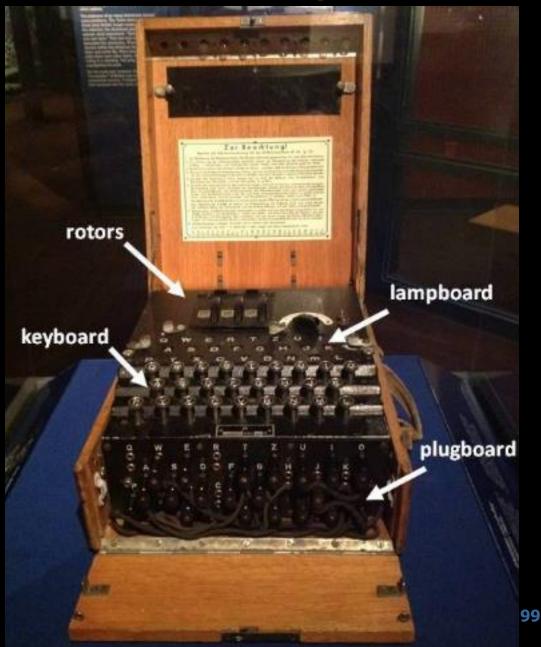
- Mesopotamian clay tablets ~1500 BC
- Caesar cipher [Julius Caesar (100-44 BC)]

Cryptography (cont.)

- Thomas Jefferson's cypher wheel (1795)
- Re-invented or improved by Etienne Bazeries (~1890)
- Basis for "M-94" cipher machine used by U.S. military from 1922 to ~1942

Jefferson's Cipher Wheel*

* Reproduction—24 alphabet wheels


Enigma Machine (1926-1945) 옾 옾

- Invented by Arthur Scherbius
- First marketed to businesses (1926)
- Improved models produced over the years
- Widely used by the German military during World War 2—radio communications
- Used 3-8 alphabet rotors
- Plugboard swapped 10-13 character pairs
 (A → D, Z → L, M → B, etc.)
- 1.589 x 10²⁰ machine settings (3 rotors)

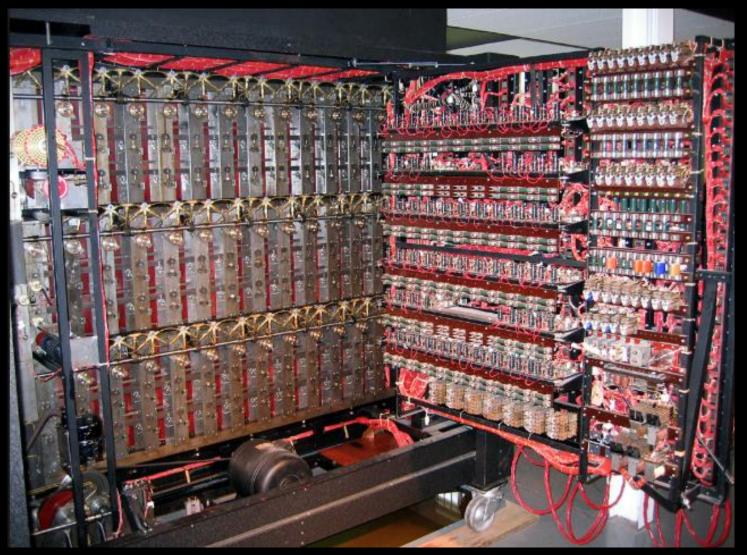
Enigma Machine (cont.)

- Military—changed settings for rotors and plugboard daily
- Decryption required enormous number of calculations (impossible by brute force)
- Weaknesses
 - a letter in plain text could not appear as itself in cypher text
 - "Das Wetter heute ist..."
 - identical message sent in two different encryption systems

German Military Enigma Machine

Bletchley Park

Government Code & Cypher School (GC&CS)

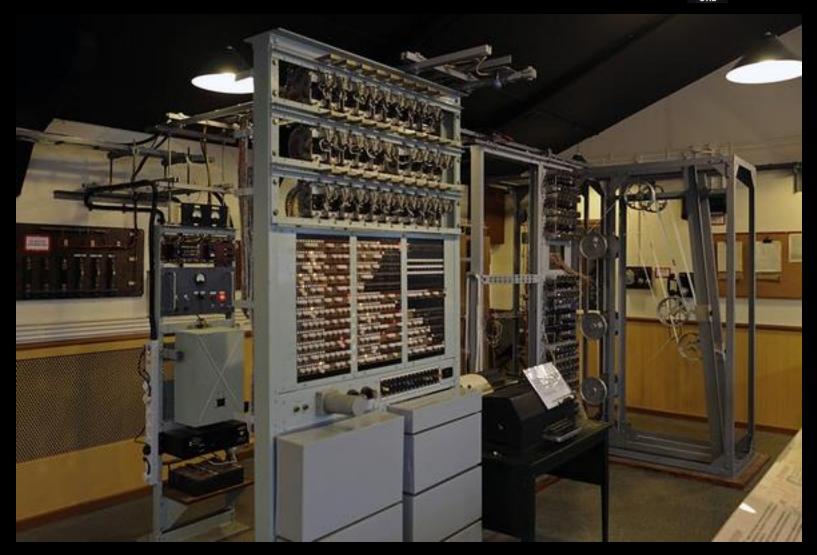

Bletchley Park

- Home of British codebreakers in WW2
- Purchased in 1938 by Hugh Sinclair with £6,000 of his money (\$486,000 today)
- Many staff recruited from Oxford & Cambridge
 - Mathematicians
 - Linguists
 - Chess players
 - "Mathematicians worked alongside girls in pearls"
- 1938/9—a few dozen staff
- 1945—10,000 staff

Bletchley Park Bombe 옾 옾

- Originally developed by the Poles in 1930s (*bomba kryptologiczna*)
 - electro-mechanical device to help decipher German Enigma encrypts
- Re-designed by Alan Turing and improved by Gordon Welchman
- 1940—2 bombes operational
- 1945— ~200 working bombes
- Highly successful in breaking **German**, Italian, Russian codes... and others

Bombe Replica*



* National Museum of Computing, Bletchley Park

Bletchley Park "Heath Robinson"

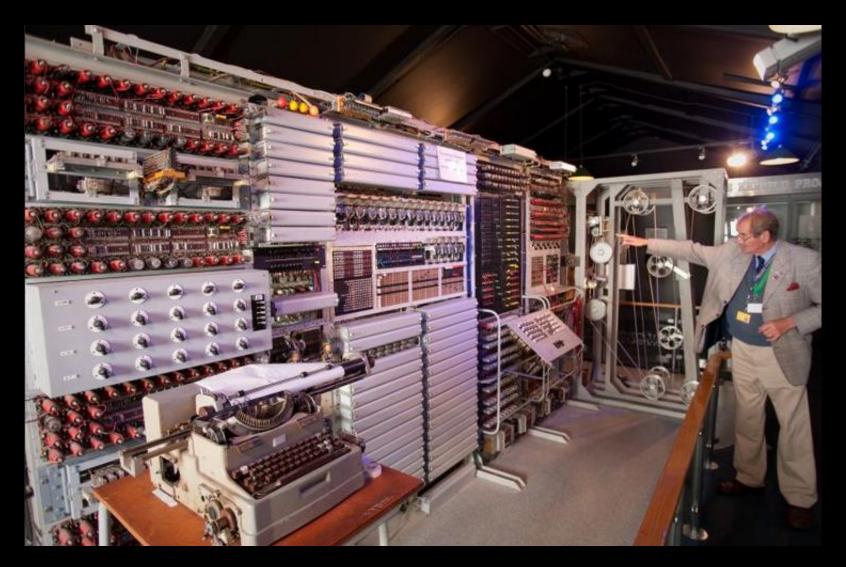
- Electro-mechanical device to help decipher German Lorenz encrypts, 1943-5
- Communications for the German High Command and Adolf Hitler
- 10-12 rotors
- Teleprinter communications
- Radio communications later in the war
- British very adept in decoding

Heath Robinson Replica*

* National Museum of Computing, Bletchley Park

Thomas Harold Flowers 🔮 🏩 (1905-98)

- Electrical Engineer
- General Post Office
 at Dollis Hill
- Explored use of electronics for telephone exchanges
- Alan Turing asked him to help

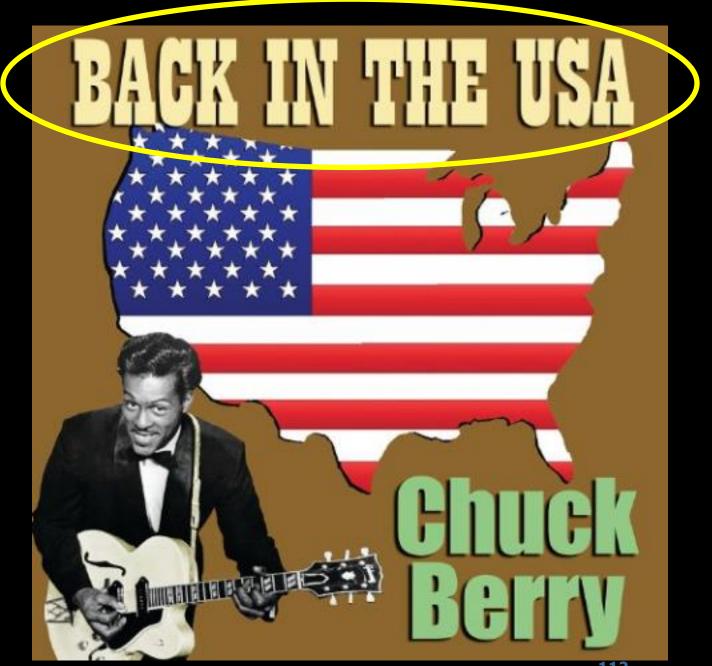

Bletchley Park Colossus 🚨 옾 옾

- Designed by Tommy Flowers
- Mark 2—2,400 vacuum tubes
- Five 6-bit shift registers
- Programmed by switches and plugs, not a stored program
- Paper tape input
- Electric typewriter output

Bletchley Park Colossus (cont.)

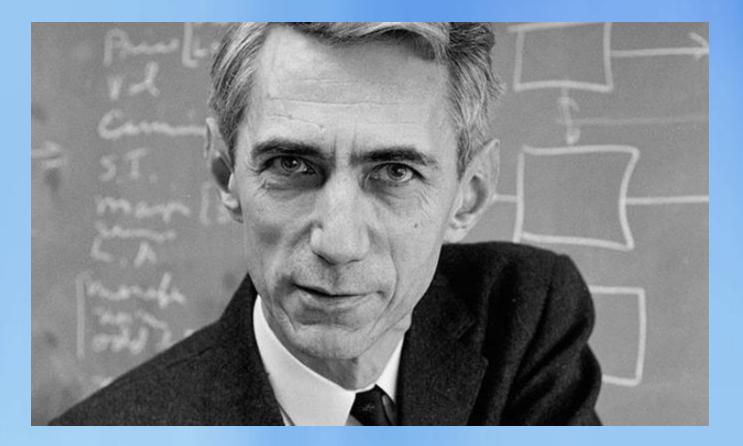
- Mark 1 worked in December 1943
- Mark 2 in production June 1, 1944
- 10 Colossi in use by end of war
- Used until 1960

Colossus Replica*


* National Museum of Computing, Bletchley Park

Bletchley Park

1974, F. W. Winterbotham Published "The Ultra Secret"


John von Neumann

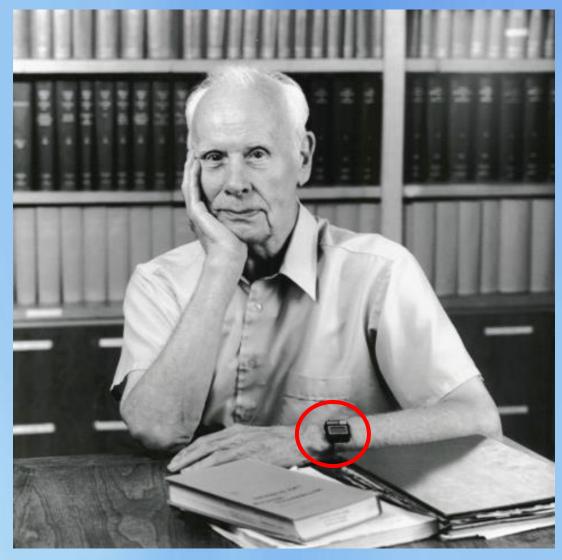
- Born: Neumann János Lajos (Hungary)
- Father elevated to nobility in 1913
- At age 6 could divide two 8-digit numbers in his head
- Party trick: memorize page of phone book and recite names and phone numbers
- Age 15 studied advanced calculus
- Age 23 B.S. in chemical engineering and Ph.D. in mathematics
- Professor at Princeton University

John von Neumann (cont.)

- Cultivated and highly sociable
- His wife, "John can count anything but calories"
- Numerous accomplishments in mathematics
- Other contributions:
 - Von Neumann computer architecture
 - Quantum mechanics
 - Game theory (economics)
 - Statistics
 - Nuclear weapons design
 - Worked with Mauchly and Eckert on the ENIAC computer

Claude Shannon (1916-2001) 🚨 옾

Claude Shannon


- A grad student under Vannevar Bush at MIT
- 1937—time off from MIT* worked at Bell Labs
- MS thesis: "A Symbolic Analysis of Relay and Switching Circuits"
 - switching circuits to simplify electromechanical relays (phone routing)
 - proved these circuits could solve all problems that Boolean algebra could solve
 - * Ph.D. from MIT in 1940

Claude Shannon (cont.)

- 1940—National Research Fellow at Princeton's Institute for Advanced Study
 - contact with Hermann Weyl, John von Neumann, Albert Einstein and Kurt Gödel
- During World War 2
 - 1943 in contact with Alan Turing
 - worked with U.S. Navy's cryptanalytical service
- Considered the father of information theory (his MS thesis)

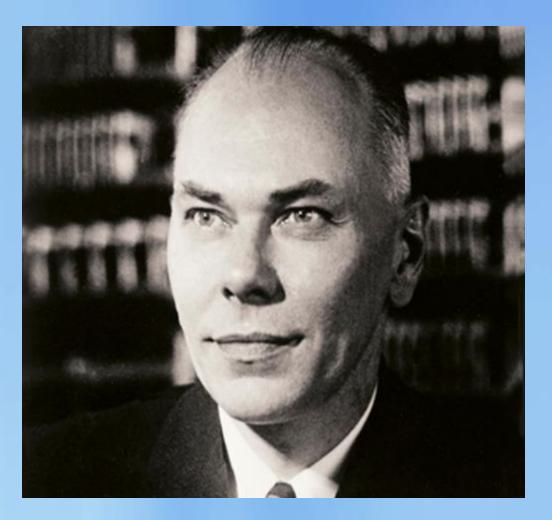
			LOGAL	RITHMS			100	100		LOGA	RITHMS	A.	100 Th	1
1	1				Differences							Dir	Terences.	
_	0	1 2 3	4 5 6	7 8 9	1 2 3 4 5 6	789	1	0	1 1 3	4 5 6	7 8 9	1 2 3 4	5 6 7 8	9
10	0000	0043 0086 0128	0170 0212 0253	0294 0334 0374	4 8 12 17 21 25	29 33 37	55	7404	7412 7419 2427	7435 7443 7451	7459 7465 7474	1 2 2 3	4 5 5 6	6 7
11 12 13 14 15	0414 0792 1139 1461 1761	0453 0492 0531 0828 0864 0899 1173 1206 1239 1492 1523 1553 1790 1818 1847	0569 0607 0545 0934 0969 1004 1271 1303 1335 1584 1614 1644 1875 1903 1931	9682 0719 0755 1038 1072 1106 1367 1399 1430 1673 1703 1732 1939 1987 2014	4 8 11 15 19 23 3 7 10 14 17 21 3 6 10 13 16 19 3 6 9 12 15 18 3 6 8 11 14 17		56 57 58 59 60	7482 7559 7634 7709 7782	7490 7497 7505 7566 7574 7582 7642 7649 7657 7716 7723 7731 7789 7796 7803	7513 7520 7528 7589 7597 7604 7664 7672 7679 7738 7745 7752 7810 7818 7425	7536 7543 7551 7612 7619 7627 7686 7694 7101 7760 7767 7174 7812 7839 7846	1123	4 5 5 6 4 5 5 6 4 4 5 6 4 4 5 6 4 4 5 6	5 7
16 17 18 19 20	2041 2304 2553 2788 3010	2068 2095 2122 2320 2351 2380 2517 66 262 2810 26 2655 3032 301 3075	2148 2175 2201 2405 1430 2455 2778 16 825 788 16 825 788 16 825	2227 2253 2279 2480 2504 2529 2718 142 2529 2718 142 255 1945 146 299	God	18 21 24 7 30 22 6 19 25 6 18 10 6 18 10		7853 7924 7925 805 8150	1960 7868 7875 1931 7938 7945 90075 682 1142		1903 7910 7917 10 7980 7917 11 8 10 7917	ion	5	5 5 5 5 5 5 5 5 5 5 5 5 5 5
11 12 12 14 25	3222 3424 3617 3802 3979	1243 3263 3284 3444 3464 3483 3644 3464 3483 3644 3555 3574 3840 1355 374 3840 1355 374	3304 3324 3345 1402 3332 3541 92 3 1 1 1729 74 3 2 1 1 1729 48 44 5 0	3365 3385 3404 3560 3579 3598 370 3750 3544 300 1144 300 1144 310 3144 310 3144 310 3144 310 3144 310 3144 310 3144 310 3144 310 3144 310 3145 3165 3385 3404 3579 3598 3165 3385 3404 3166 3579 3598 3165 3385 3404 3166 3579 3598 3166 3579 3598 3170 3170 316 316 3170 3170 318 316 3170 3170 318 316 3170 3170 318 316 316 3170 318 316 316 3170 318 316 3170 318 318 316 3170 318 318 316 3170 318 318 318 318 318 318 318 318 318 318	exe		100	#195 #261 #171 \$88	4202 8209 8215 825 874 8280 831 835 834 837 835 834 837 83 7 84 23 80	ste	8241 8248 8254 8386 8512 8319 30 10 10 10 10 31 10 10 10 31 10 10 31 10 10 31 10 311		3 4 5 5 3 4 5 5 3 4 4 5 3 4 4 5 3 4 4 5	6 6 6 6
26 27 28 29 39	4150 4314 4472 4624 4771	4166 4183 4200 4330 4346 4362 4487 4502 4518 4639 4654 4669 4786 4800 4814	4216 4232 4249 4378 4393 4409 4533 4548 4564 4683 4098 4713 4829 4843 4857	4265 4281 4298 4425 4440 4456 4579 4594 4609 4728 4742 4757 4871 4886 4900	2 3 5 7 8 10 2 3 5 6 8 9 2 3 5 6 8 9 1 3 4 6 7 9 1 3 4 6 7 9	Contraction of the second second	122242	8513 8573 8633 8692 8751	8519 8525 8331 8579 8585 8591 8639 8645 8651 8698 8704 8710 8756 8762 8768	8537 8543 8549 Ch3 855 8774 8779 8785	8555 8561 8567 8615 8621 8 8791 8797 8802	abb	age	****
H II	4914 5051 5185 5315 5441	4928 4942 4955 5065 5079 5092 5198 5211 5224 5328 5340 5353 5453 5465 5478	4969 4983 4997 5105 5119 5132 5237 5250 5263 5366 5378 5391 5490 5502 5514	5011 5024 5038 5145 5159 5172 5276 5289 5302 5403 5416 5428 5523 5516 5551	1 3 4 6 7 8 1 3 4 5 7 8 1 3 4 5 6 8 1 3 4 5 6 8 1 3 4 5 6 8	10 11 12 9 11 12 9 10 12 9 10 13 9 10 11	76 77 78 79	8808 8865 8921 8976 9011	8814 8820 8825 8871 8876 8882 8927 8932 8938 8982 8987 5993 9516 9517 9547	8831 8837 8842 8887 8993 8899 8943 8949 8954 8998 9004 9009 9053 9058 9053	8848 8854 8859 8984 8910 8915 8960 8965 8971 9015 9020 9025 9866 9074 9079			5 5 5 5 5 5
36 37 38 39 40	5563 5682 5798 5911 6021	5575 5587 5599 5694 5705 5717 5809 5821 5832 5922 5933 5944 6031 6042 6053	5621 5 5729 5 5843 5 5955 5 6066 6472 5872	ngin	eer	s a	t	B	ell	Lab	S —	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
44444	S	tru	ggli	ng v	with	СС	on	n	plex	(ca	Icul	ati	on	S
41445	6628 6721 6812 6902 6990	6637 6646 6656 6730 6739 6749 6821 5830 6839 6911 6920 6928 6998 1007 7016	6665 6675 6684 6758 6767 6776 6848 6857 6856 0937 6946 6955 7024 7033 7042	6693 6702 6712 6785 6794 6803 6875 6884 6893 6964 6972 6981 3050 3059 7067	1 2 3 4 5 6 1 2 3 4 5 5 1 2 3 4 4 5	7 7 8 6 7 8 6 7 8 6 7 8 6 7 8	9 92 93 94 95	9590 9638 9685 9731 9777	9595 9600 9605 9643 9647 9652 9689 9694 9699 9736 9741 9745 9782 9786 9791	9609 9514 9619 9653 9661 9666 9703 9708 9713 9759 9754 9759 9795 9500 9805	9624 9628 9633 9671 9675 9680 9717 9722 9727 9763 9788 9773 9809 9814 9818	0 1 1 2 0 1 1 2	2 3 3 4 2 3 3 4 2 3 3 4 2 3 3 4 2 3 3 4	1 4
51 52 53 54	7076 7160 7243 7324	1084 1093 7101 1168 7177 7185 7251 7259 7267 7332 7340 7348	7110 7118 7126 7193 7202 7210 7275 7284 7292 7356 7364 7372	7135 7143 7152 7218 7226 7235 7300 7308 7316 7380 7388 7396	1 2 3 3 4 5 1 2 2 3 4 5	6 7 8 6 7 7 6 6 7 6 6 7 6 7	96 97 98 99	9873 9868 9912 9956	9827 9832 9836 9872 9877 9831 9617 9921 9926 9961 9965 9969	9841 9845 9850 9886 9890 9894 9930 9334 9939 9974 9938 9983	9854 9859 9863 9899 9903 9908 9943 9948 9952 9987 9361 9996	0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2	2 3 3 4 2 3 3 4 2 3 3 4 4 2 3 3 4 4 4 4	
-	0	1 2 3	4 5 6	7 8 9	1 2 3 4 5 6	7 8 9	-	0	1 2 3	4 5 6	7 8 9	1 2 3 4	5 6 7 8	9
2							3		ALT BY	1.2.4	CIN CALL		1.5	3

George Stibitz* (1904-95) 옾 옾

* 1930 Ph.D. in mathematical physics, Cornell University 120

George Stibitz

- A mathematician working at Bell Labs same time as Claude Shannon
 - worked on how to handle complicated calculations needed by phone engineers
- Created a circuit to add binary numbers using light bulbs and a tobacco tin—at his kitchen table (Model K-1)
- Proposed building a general calculator using an electric circuit (1937)


George Stibitz (cont.)

- Complex Number Calculator (1939)
 - 400 relays (switches)
 - each opening and closing 20x/sec
- Blindingly fast compared to mechanical calculators
- Glacially slow compared to vacuum-tube circuits just being invented

1940s

* 1939 Ph.D. in physics, Harvard University

						LOGAL	RITHM!															LOGAN	UTHM	5							
				1			1				- 1	Differe	-	-	-					1.00								Dir	ference		
	0	1 2	3	4	5	6	7	8	9	1 2	1 3	4 5	6	7 8 9	1	0	1	3	3	4	5	6	7	8	9	1	2 3	4	5 (1	8 9
10	0000	0043 008	6 0128	0170	0212	0253	0294	0334	0374	4	8 12	17 21	25	29 33 37	55	7404	7412	3419	2427	7435	7443	7451	7459	7466	7474	1	2 2	1	4	5	5 6 7
11 12 13 14 15	0414 0792 1139 1461 1761	0453 049 0828 084 1173 126 1492 152 1790 181	4 0899 6 1239 3 1553	0934 1271 1584	0969 1303 1614		1038 1367 1673	0719 1072 1399 1703 1987	1106 1430 1732	3		15 19 54 17 13 16 12 15 11 14	21 19 18	26 30 34 24 28 31 23 26 29 21 24 27 20 22 25	56 57 58 59 60	7482 7559 7634 7709 7782	7490 7566 7642 7716 7789	7574 7649 7723	7582 7651 7731	7589 T664 7738	7597 7672 7745	7528 7604 7679 7752 7825	7612 7686 7760	7619 7694 7767	7551 7627 7301 7774 7846		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3			
16 17 18 19 20	2041 2304 2553 2788 3010	2068 209 2370 235 25 7 66 2810 26 3032 30	5 2122 2380 2625 2856 3075		2175 1430 167 195	2201 2455 1995 1923 34	2227 2480 2718 2945 1160	2253 2504 152 16 171	2279 2529 298	32		11 13 10 12 9 1	16 15	18 21 24 7 20 28 6 19 8 6 18 0 6 18 0		7853 7924 7924	1860 1931	7868 7938 8007 8075 8142	7875 7945 081	7882 7952 319	7889 1959 107 107	7896 7965 233 8100 2000	79 8 90 51 9	7980	7917 7957 8010 81 2 81 2						6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
222242	3222 3424 3617 3802 3979	3243 326 3444 346 3655 363 3850 33 3957 40		3304 1902 92 94	3324 3512 3711 3812 4403	3345 3541 1729 00	3365 3560 3747 3747 4490	3385 3579 3766 9-0 110	3404 3598 1384 3 2 4 3	222	600	8 10 8 10 7 9 7 9	12 12 11 1		te	#195 #265 #155 #155	4202 8217 83 83 83 84	8274	8280	8287	3293	8235 8299 8355 8355 8355	8241 8306 210 212 4	8248 8312 9224 43 50	8254 8319 9382 84 5 82 6			33222	3		5 6 5 6 5 6
****	4150 4314 4472 4624 4771	4166 418 4330 434 4487 450 4639 465 4786 480	6 4362 12 4518 14 4569	4216 4378 4533 4683	4232 4393 4548 4698 4843	4249 4409 4564 4713	4265 4425 4579 4728	4281 4440 4594 4742 4586	4298 4456 4609 4757	1000	3 5 3 5 3 4	7868	10 9 9	11 13 15 11 13 14 11 12 14 10 12 13 10 11 13	T1 72 73 74 75	8513 8573 8633 8692 8751	8519 8579 8639 8698 8756	8525 8585 8645 8704	8531 8591 8651 8710	G	6	8549 8679 8785		8561 8621 Si	8567 888 8802		201	b	a	g	*****
H H H H H	4914 5051 5185 5315 5441	4928 494 5065 507 5198 521 5328 534 5453 546	9 5092 1 5224 0 5353	5105 5237 5356	5378	5132 5263	5145 5276 5403	5024 5159 5289 5416 5510	5172 5302 5428				8	10 11 12 9 11 12 9 10 12 9 10 11 9 10 11	76 77 78 79	8808 8865 8921 8976 9011	8814 8871 8927 8982 9016	8876 8912 8987	8882 8938 8993	8887 8943 8998	8993 8949 9004	8842 8899 8958 9009 9063	8904 8960 9015	8910 8965 9020	8859 8915 8971 9025 9079	1 1 1 1		222222	333		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
M17 M 29 40	5563 5682 5798 5911 6021	5575 558 5694 570 5809 582 5922 593 6031 604	5 5717 1 5832 3 5944 2 6053	56,004	84/72	0082	06440	0197	0117 1					tu		9299	9,099	4.004	1000	4213	91.00	A173	1.100	4113	7340			. 2	3		4 5 5 5 5
****	612 623 633 643 653	sti	ſL	Ig		yl	ir		g	V	V	it	h	n te	90			J	S	C		al	С	U		a	t		0	n	S
****	6628 6721 6812 6902 6990	6637 664 6730 673 6821 683 6911 692 6998 100	9 6749 0 6839 0 6928	6758 6848 6937	6767 6857 6946	6684 6776 6866 6955 7042	6785 6875 6964	6702 6794 6884 6972 7059	6803 6893 6981		2 3 3 3 3 3 3 3 3	44443	5	7 7 8 6 7 8 6 7 8 6 7 8	91 92 93 94 95	9590 9638 9685 9731 9777	9595 9643 9689 9736 9782	9647 9694 9741	9652 9699 9745	9657 9703 9750	9561 9708 9754	9619 9956 9713 9759 9805	9671 9717 9763	9675 9722 9768	9633 9680 9727 9773 9818	00000		22222	222		4 4
51 52 53 54	1016 7160 7243 7324	7084 709 7168 717 7251 725 7332 734	7 7185	7193	7202	7126 7210 7292 7372	7218	7143 7226 7308 7388	7235 7316			3 4 3 4	1 5	6 7 8 6 7 7 6 6 7 6 6 7	96 97 98 99	9823 9868 9912 9956	9827 9872 9917 9961	9921	9831 9926	9886 9930	9990 9934	0850 9994 9939 9983	9899 9943	9903 9948	9963 9908 9952 9996				1		4 4 4 4
-	0	1 2	,	4	5	6	7		,	1 3	1 3	4.5	6	7 8 9	-	0	1	2	3	4	5	6	7	8	9	,	2 3	4	5		8 9


Howard Aiken

- Department head mentioned something in the attic that might help
- A demonstration model of Babbage's Difference Engine (~100 years old)
- 1939—wrote research proposal to IBM and Harvard faculty to create a modern version of Babbage's machine
- Harvard sniffed
- 1941—IBM constructed the machine to Aiken's specifications

Howard Aiken (cont.)

- 1941—Aiken joined the U.S. Navy
- Taught at the Naval Mine Warfare School in Virginia (Yorktown?)
- 1944—IBM shipped the Mark 1 computer to Harvard
- Navy assigned Aiken as "officer in charge" of the Mark 1
 - all Aiken's staff U.S. Navy personnel
 - able to avoid academic bureaucracy
 - Harvard still sniffed (no professorship for you—not yet)

Harvard University—Mark I Computer

Harvard Mark | Computer*

* aka ASCC (<u>Automatic Sequence Controlled Calculator</u>)

Harvard Mark I

- 51 feet long, 8 feet high, 4.7 tons
- Digital (base 10) not binary
- Slow—765,000 electromechanical components (6 sec to do a multiplication)
- Programs and data entered by paper tape
- Ran for days without human intervention
- Fully automatic
- "Babbage's dream come true"—Howard Aiken

Harvard Mark I (cont.)

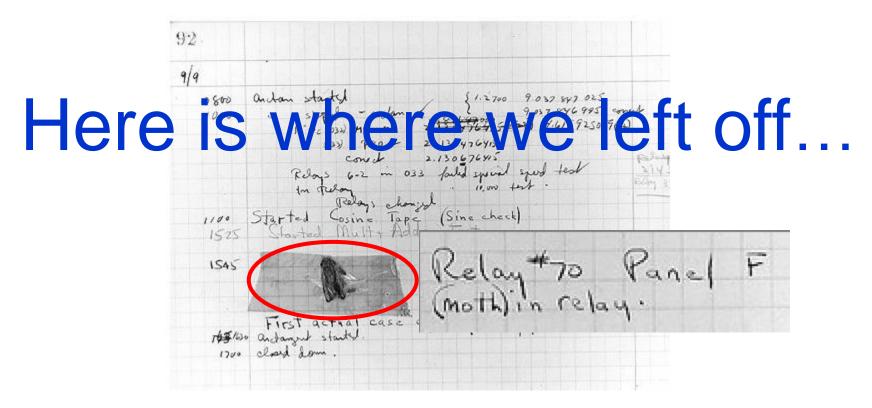
- Successors to Mark 1
 - Mark II (1947-8)
 - Mark III/ADEC (1949)
 - Mark IV (1952)
- Used for U.S. Navy and Air Force projects
- All the work of Howard Aiken

Commodore Grace M. Hopper, USN Strate Contract of the second (1906-92)

- aka "Amazing Grace" 0
- Computer scientist and U.S. Navy • officer (41 years active service)
- "Grandmother" of COBOL 0
- One of first Harvard Mark I • programmers
- Developed first compiler for a • computer language
- Coined term "computer bug" •

The Original Computer Bug

92 9/9 antan started 0800 51.2700 9.037 847 025 9.037 846 995 const 1000 storyed 2.130476415-63) 4.615925059(-2) 13 40 (032) MP 2.130476415 (33) PRO 2 2.13067641 conde fould special special test 6-2 m 033 Relas In tela Relays change (Sine check) Started 1100 Cosine Tap 1525 Multz Startes Relay #70 Panel (moth) in relay. F 1545 HE los andagent starty. closed down . 1700


80 Years of Computer History Lorrin R. Garson

Lifetime Learning Institute of Northern Virginia Summer 2019

> Lecture 2 of 3 August 29, 2019

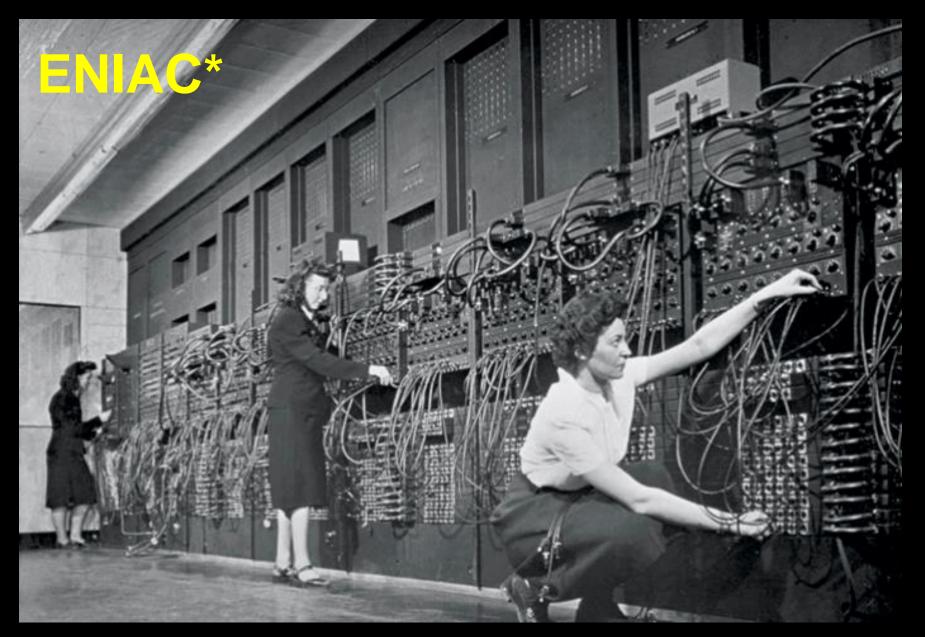
© 2019 Lorrin R. Garson

The Original Computer Bug

↑ Grace Hopper's research book

John Mauchly (1907-80)

From "The Innovators" by Walter Isaacson, Simon & Shuster, 2014 J. Presper Eckert (1919-95)



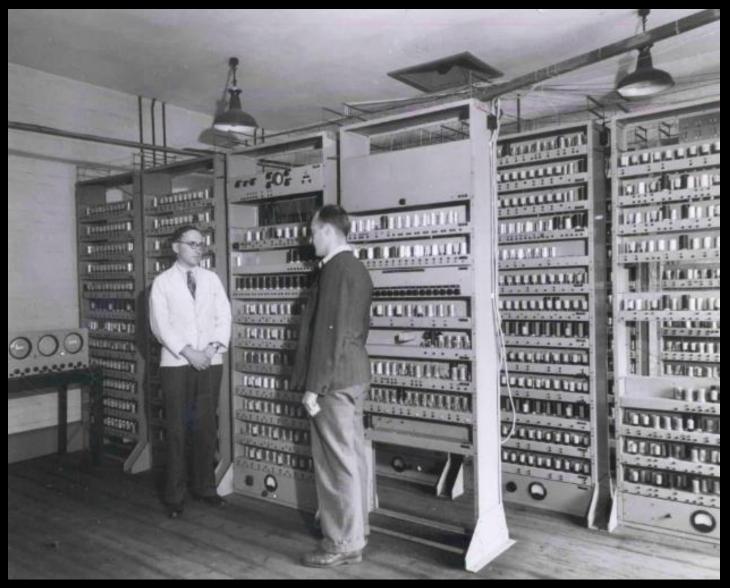
- Designed by Mauchly and Eckert
- Funded by U.S. Army to calculate artillery firing tables*
- Designed to be a general purpose computer
- Construction started in 1943
- Used decimal, not binary numbers
- 17,000 to 20,000 vacuum tubes
- Failure of 2-6 vacuum tubes/day 50% uptime**

* Also used in the development of the hydrogen bomb ** Longest continuous operation 116 hours 137

ENIAC (cont.)

- 98 ft long, 8 feet high, 3 feet deep; 30 tons
- Used subroutines and conditional branching
- 5,000 additions and subtractions per second— 100 times faster than any previous computer
- Operational in 1945—in operation until 1955
- Development cost ~\$500,000 in 1943 (~\$7 million today)
- Origin of the commercial computer industry

* ENIAC = Electronic Numerical Integrator and Computer



- Successor to the ENIAC
 - designed by Mauchly and Eckert
- Funded by U.S. Army
- Designed to be a general purpose computer
- Stored program
- 5.5 KB memory
- Floating point arithmetic (example 3.566 x 10⁵)
- Used binary numbers
- Used magnetic tape
- * Electronic Discrete Variable Automatic Computer

EDVAC (cont.)

- 6,000 vacuum tubes and 12,000 diodes
- Weighed 8.7 tons
- Consumed 56 kW electricity
- 1949—installed at the U.S. Army Ballistics Research Laboratory (Aberdeen, Maryland)
- Operating personnel—30 people per 8-hour shift
- Famous, influential report by John von Neumann on the EDVAC

EDVAC*

* EDVAC = Electronic Discrete Variable Computer

The Modern Computer

- A machine that is (a) electronic, (b) general purpose, (c) and programmable
- "Turing-complete"—can be used to solve any computation problem

So... Who Invented the Modern Computer?

Year	Computer	Binary	Electronic	Programable	General Purpose
	-				
	-				

Oops... an error, it's Konrad Zuse

Thomas J. Watson, Sr. (1874-1956) ...

CEO & Chairman IBM 1914-1956

"I think there is a world market for maybe five computers."

Bell Labs (1925)

Bellcore [iconectiv] (1983)

Telcordia Technologies (1999)

> Ericsson (2012)

Bell Laboratories

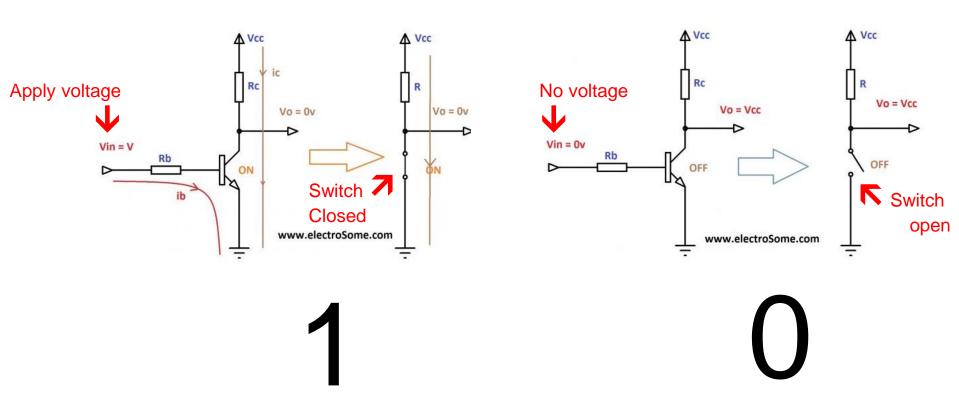
146

Bell Laboratories 🔍 🔍

- Searching for a replacement for vacuum tubes for switching in telephone circuits
- Vacuum tubes:
 - expensive
 - faster than relay switches but slow
 - require lots of energy
 - short lifespan (high maintenance)

Today: Bell Laboratories "The world leader in rodent control technology"

The Inventors



Transistor as a Switch

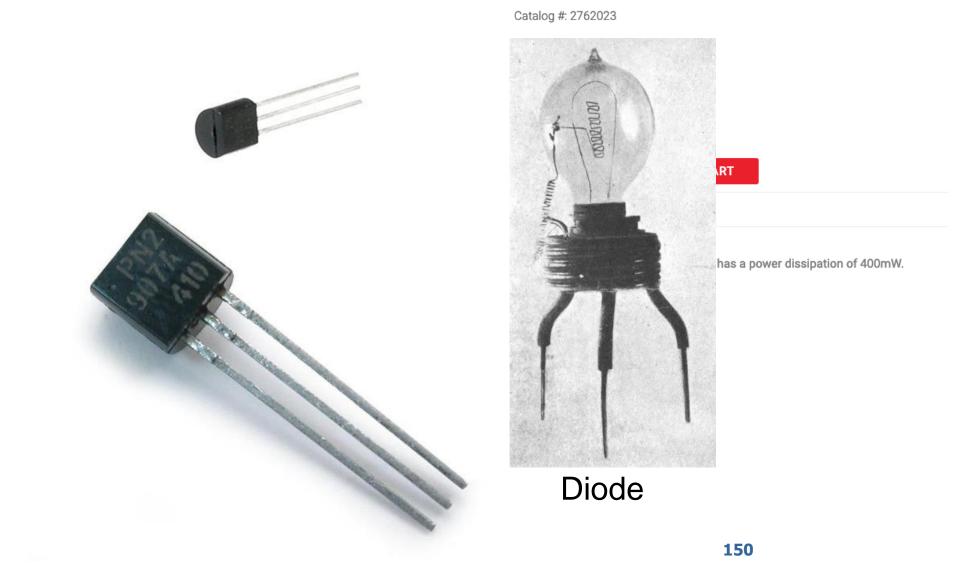
Transistor as a Switch – ON

Transistor as a Switch – OFF

Search by Keyword or SKU

Q

Find a Store Your Account


SHOP ALL HEADPHONES RADIOS BATTERIES PARTS

RadioShack.

Home » Parts » Transistors & Integrated Circuits PNP Bipolar Transistor

🃜 0 items

Transistor Radio Regency TR-1 November 1954

Texas Instruments and I.D.E.A.

Man or Machine?

- Alan Turing published "Computing Machinery and Intelligence"*

 a discussion of thinking and intelligence
- A human queries...
 - a computer
 - and a human
- If the answers from computer and human are indistinguishable...

* *Mind*, LIX (236), October 1950, pp. 433-460

Man or Machine? (cont.)

- ...is the computer thinking? Does it have intelligence?
- The "Turing Test"
- The seminal paper in artificial intelligence
- "We may hope that machines will eventually compete with men in all purely intellectual fields."—Alan Turning

At the U.S. Census Bureau

Univac 1

- Created by Eckert and Mauchly
- First commercial computer in U.S.
 produced by Remington Rand
- 5,200 vacuum tubes, 14.5 tons
- 46 sold at \$1 million each (\$9 million today)
- 1952—from 1% of voting population, predicted Eisenhower winner over Stevenson

1952 presidential election Eisenhower vs. Stevenson 🔍 🔍

Printout from Univac 1

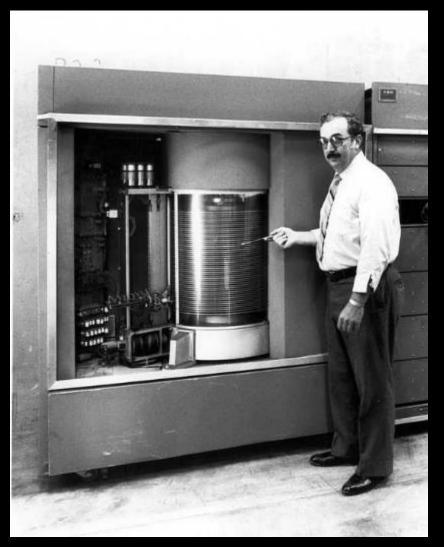
8.30 P.TT.

IT'S AWFULLY EARLY, BUT I'LL GO OUT ON A LIMB.

UNIVAC PREDICTS--with 3,398,745 votes in---

	STEVENSON	EISENHOWER
STATES	5	43
ELECTORAL	93 89	438 442
POPULAR	18,986,436	32,915,049
THE CHANCES ELECTION OF EIS		34,075,529 1 IN FAVOR OF THE

Programmers never imagined needing more than 2 digits



IBM 701

- Beginning of IBM's entry into large computers (1953)
- Lease \$15,000/month*
- First commercial scientific computer
- In production 3 years; 19 units leased
- Used by
 - aircraft manufactures
 - DoD nuclear weapons designers
- * \$140,000/month today

1956—IBM 350 Disk Drive

- First commercial HDD
- 50 platters
- 100 bytes/platter
- 5 million 6-bit characters
- Total storage 3.75 KB*
- Lease price \$7,000/month (2019 dollars)

* Subsequent models had 5, 10, 15 or 20 MB

IBM's Current Businesses

Watson Uncover insights, engage in new ways and make more confident decisions	Cloud Built for apps, AI-ready and designed with security in mind	Services Work with experts in technology, process and industry to create breakthroughs	
→ IBM Watson for smarter business	→ IBM Cloud for smarter business	→ IBM Services for smarter business	
"Computer" isn't mentioned			

Blockchain

Drive more transparency and greater trust in transactions

→ IBM Blockchain for smarter business

Security

Protect what's most important — your business and your clients

→ IBM Security for smarter business IoT

Seamlessly connect physical and digital worlds by leveraging data and AI

ightarrow IBM IoT for smarter business

391 San Antonio Road, Mountain View, California

1956

Shockley Laboratories

- 1956—established by William Shockley
 funded by Arnold Beckman
- Convinced silicon would replace germanium
- Created theoretical theory of solar cells

 showing a maximum efficiency of 30%*
- Shockley as a manager...
 - outstanding in picking talent
 - over 20 years, 65 companies were founded by 1st or 2nd generation former Shockley Labs employees
 - horrific as a manager
- * Solar cells >40% efficiency have been created 163

391 San Antonio Road, Mountain View, California

391 San Antonio Road, Mountain View, California

The Nobel Prize in Physics 1956

Photo from the Nobel Foundation archive.

William Bradford Shockley

John Bardeen
Prize share: 1/3

Photo from the Nobel Foundation archive.

Walter Houser Brattain

Prize share: 1/3

Prize share: 1/3

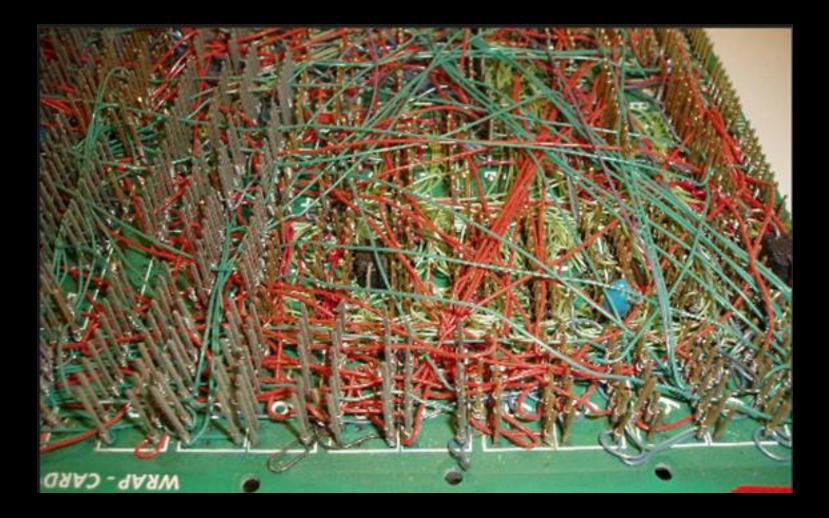
"...for their researches on semiconductors and their discovery of the transistor effect."

Gordon Moore

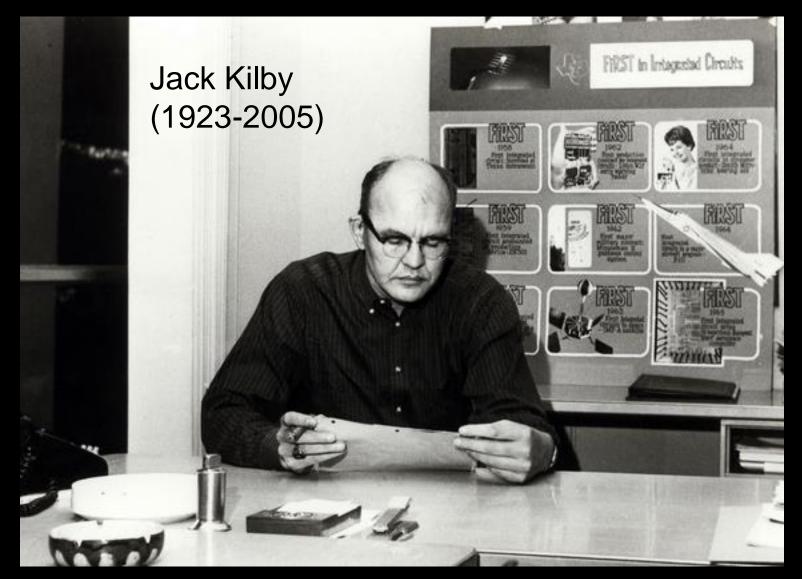
100.0

William Shockley

Fairchild Semiconductor International, Inc.*

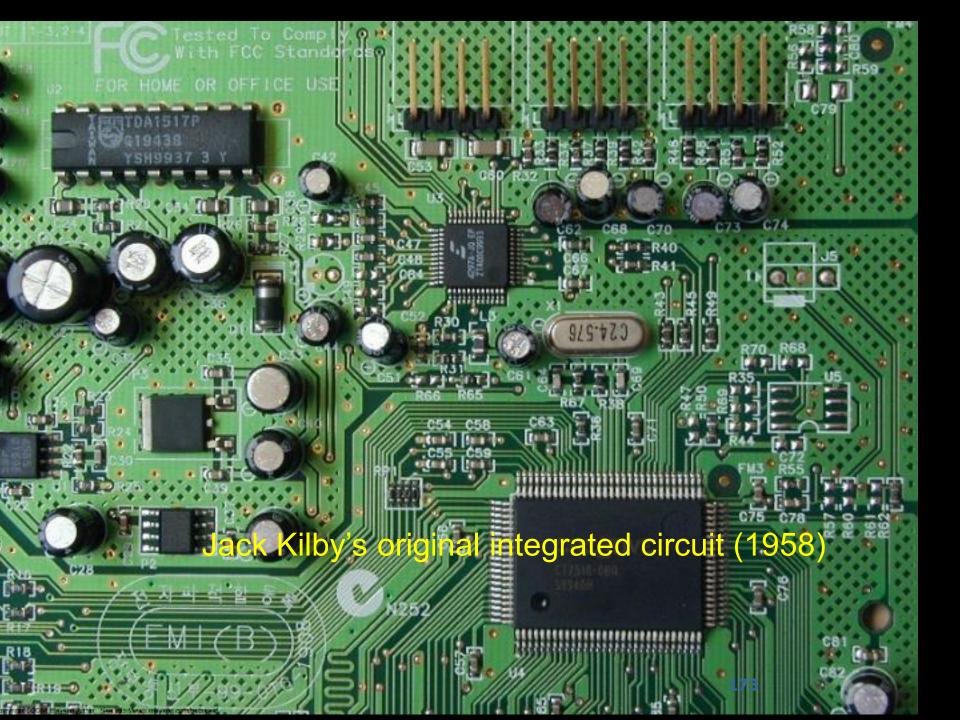

- 1957—founded by the "traitorous eight"

 a division of Fairchild Camera and Instruments
- Pioneer in manufacturing transistors and integrated circuits


More about Robert Noyce and Gordon Moore shortly

* Since 2016 a subsidiary of ON Semiconductor

We have a problem...


Integrated Circuits

Jack Kilby 🔍 🔍

- Worked at Texas Instruments
- Patent filed February 6, 1959
 "Miniaturized Electronic Circuits"
- 2000—Nobel Prize in Physics with Zhores Alferov and Herbert Kroemer*
- Technology improved by Robert Noyce
 - Kilby used germanium
 - Noyce used silicon
 - Noyce eliminated wires
 - other enhancements

* Had Robert Noyce survived, he probably would have been included

1957—Fortran Developed

- Designed by John Backus & team at IBM
- General purpose language especially suited to numeric and scientific computing
- Used for:
 - Weather prediction
 - Computational fluid dynamics
 - Computational physics and chemistry
 - Crystallography
- Still in use today (legacy systems)

1959—Cobol 옾

- Designed by CODASYL* for DoD
- Based on design work of FLOW-MATIC developed by Grace Hopper
- Widely used in business, finance, and administrative systems on mainframes
- Verbose, 300+ reserved words
- Largely used in legacy systems, but...
 estimated 100 billion lines of COBOL still used today

* Conference/Committee on Data Systems Languages

DEC PDP-1 (1959) URL URL

DEC = <u>D</u>igital <u>E</u>quipment <u>C</u>ompany

PDP-1

- PDP = Programmed Data Processor
- First minicomputer
- 2,700 transistors and 3,000 diodes
- 9 to 65 KB RAM
- 187 KHz clock speed*
- Seed of "hacker culture" at MIT
- "Spacewar"—first computer game, created by Steve Russell
- * 187 KHz = 0.000187 GHz This computer: 2.6 GHz to follow 177

IBM 7030 "Stretch" Supercomputer

IBM 7030 Supercomputer 옾

- IBM's first transistorized computer (1961)
- Designed by Gene Amdahl 🔜 🔜
- World's fastest computer 1961-64
- Price—\$8 million (\$66.5 million today); only 9 sold
- 35 tons
- 64-bit processor
- Memory 2.048 MB
- Speed 1.2 MIPS

IBM System/360

IBM System/360

- In service 1965 to 1978
 a family of 14 models of computers
- Designed by Gene Amdahl
- Commercial and scientific applications
- 256 KB to 8 MB memory
- Backward compatibility

Overview IBM Computers

	Year	Model	Comments
\rightarrow	1953	701	IBM's entry into large computers
	1954	NORC	Naval Ordance Research Computer
	1958	SAGE AN/FSQ-7	North American Air Defense System at MIT
_	1959	1401	Popular enterprise system, high volume
\rightarrow	1960-68	System/360	Dominant mainframe systems
	1966	System/4Pi	9000 sold to DoD by the 1980s
\rightarrow	1970	System/370	Replacement for System/360 mainframe family
_	1975	5100	"Portable" computer (50 lbs.)
\rightarrow	1981	IBM PC	Industry standard. \$1,565 and up (today \$4,500 and up)
	1983	System/36	Mid-range, office automation
\rightarrow	1983	IBM PCjr	For the home market
_	1988	System/400	Medium size business computer family
\rightarrow	1990	System/390	Replacement for System/370
_	1990	RISC System/6000	Workstations
\rightarrow	1992	Thinkpad	Notebook computer
-	2001	eServer "Regatta"	Unix based
	2003	eServer zSeries 990	Enterprise-class server
	2005	System z9	Mainframe
	2006	15	Medium size business computer
_	2008	WebSphere line	Premises and application servers
\rightarrow	2015	z13	Small mainframe, \$75,000
\rightarrow	2017	z14	Mainframe 183

IBM "Minnow" Floppy Disk Drive (1969)

IBM "Minnow" Floppy Disk

- Developed in 1967

 marketed starting 1971
- 8-inch (200 mm) floppy disk
- 80 KB capacity

Types of Floppy Disks

CDC 6600 Supercomputer*

* **CDC** = <u>**C**</u>ontrol <u>**D**</u>ata <u>**C**</u>orporation

CDC 6600 Supercomputer

- World's fastest 1964-69
- Designed by Seymour Cray Seymour
- \$7 million (today \$56 million)
- 6 tons
- CPU 10 MHz*
- RAM 982 KB
- Used FORTRAN

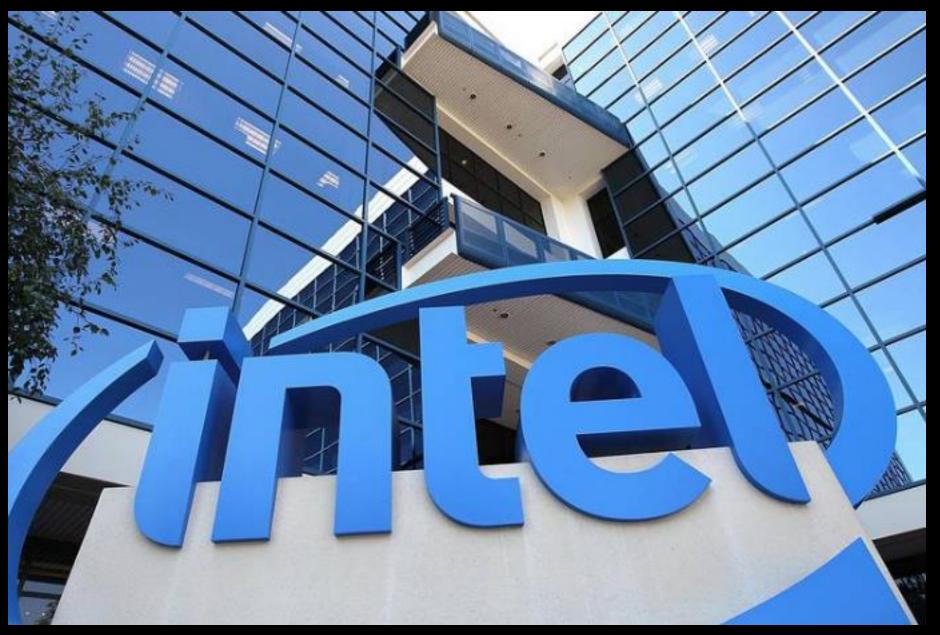
 for scientific and engineering projects
- * 10 MHz = 0.01 GHz This computer: 2.6 GHz

"Mother of All Demos"

- ACM/IEEE Meeting in San Francisco, December 9, 1968; ~1,000 attendees

 presented by Douglas Engelbart
- Live 90-minute demo of the "oN-Line System", aka NLS
- Telephone link to Menlo Park (30 miles away)
- On YouTube today
- The first public demonstration of the following on a single system...

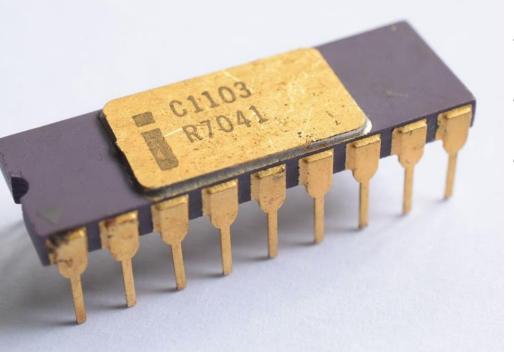
"Mother of All Demos" (cont.)

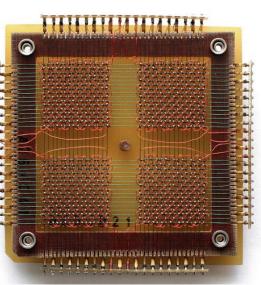

- Hypertext
- Graphics
- Windows

A panoramic view of the future

- Video conferencing
- Computer mouse
- Word processing
- Dynamic file linking
- Revision control
- A collaborative real-time editor
- Efficient navigation and command input

Engelbart's Mouse




- 1968—founded by Robert Noyce and Gordon Moore... and Andrew ("Andy") Grove
- Intel named from integrated electronics
- Early developer of SRAM and DRAM memory chips .
- Following success of the PC, microprocessors became their major products (x86 architecture)
- In competition with Microsoft for control of the direction of the PC industry
- In strong competition with AMD and others

Intel 1103 DRAM* Chip 🚨

- Released October 1970
- 1 KB capacity
- Replaced magnetic core type memory

* The traditional RAM in computers are DRAM (Dynamic Random Access Memory)

1970s

E-Mail Comes Along

- Created by Ray Tomlinson
 - computer engineer at MIT
 - 1971 sent first message to himself via ARPANET
 - known for "@" locator in email addresses

OR

Created by Shiva Ayyadurai Shiva Ayyadurai

- developed as a high school student in late 1970

IBM 3850 Mass Storage System 옾

- Released in 1974; used through 1986
- Used thousands of cartridges (50 MB each)
- Whole system held 472 GB of data*

* This computer has 250 GB of SSD storage

WD 10,000 GB drive 1

- Ph.D. Elec. Eng. Stanford 1962
- Intel 1968-1989
- Atari 1984-1989
- Teklicon 1990-2007

United States Patent [19] Hoff, Jr. et al.

[54] MEMORY SYSTEM FOR A MULTI-CHIP DIGITAL COMPUTER

- [75] Inventors: Marcian Edward Hoff, Jr., Santa Clara: Stanley Mazor, Supervise; Federico Faggin, Cupertino, all of Calif.
- [73] Assignee: Intel Corporation, Santa Clara, Calif.
- [22] Filed: Jan. 22, 1973
- [21] Appl. No.: 325,511
- [52] U.S. Cl. 340/172.5, 340/173 R, 340/173 SP, 307/238
- [51] Int. Cl..... G06f 13/00, G11c 11/44
- [58] Field of Search 340/172.5, 173 SP, 173 R; 307/238, 279

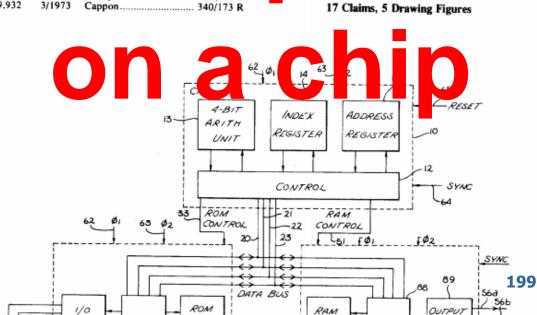
[56]	References Cited				
	UNIT	J TES PATENTS			
3,460,094	8/1	Pryor			
3,641,511	2/1 2	Cricchi e J	307	8 X	
3,680,061	7/1	Arb et	340	3 R	
3,681,763	8/19	M e et	340	3 R	
3,685,020	8/1972	cade	340	/172.5	
3,702,988	11/1972	Haney et al	340	/172.5	
3,719,932	3/1973	Cappon	340/	173 R	

[11] **3,821,715**

[45] June 28, 1974

3,731,285	5/1973	Bell 3	40/172.5
3,735,368	5/1973	Beausoleil 34	
3,737,866	6/1953	Gruner 3	40/172.5
3,740,723	6/1973	Beausoleil et al 3	40/172.5

OTHER PUBLICATIONS


Schuenemann, "Computer Control" in IBM Technical Disclosure Bulletin, Vol. 14, No. 12, May 1972; pp. 3794–3795.

Primary Examiner-Paul J. Henon Assistant Examiner-Melvin B. Chapnick Attorney, Agent, or Firm-Spensley, Horn & Lubitz

[57] ABSTRACT

A general purpose digital computer which comprises a plurality of metal-oxide-semiconductor (MOS) chips. Random-access-memories (RAM) and read-onlymemories (ROM) used as part of the computer are coupled to common bi-directional data buses to a central processing unit (CP with each memory includling ircui ne pluег ic ty of v cł d the CPU. en s is ing co is f rica d u g chins ounted on inall ving addial memory chips to be added to the computer.

A general purpose digital computer

First to Market—Computer on a Chip (1971) Intel 4004

2,300 transistors 740 KHz clock speed*

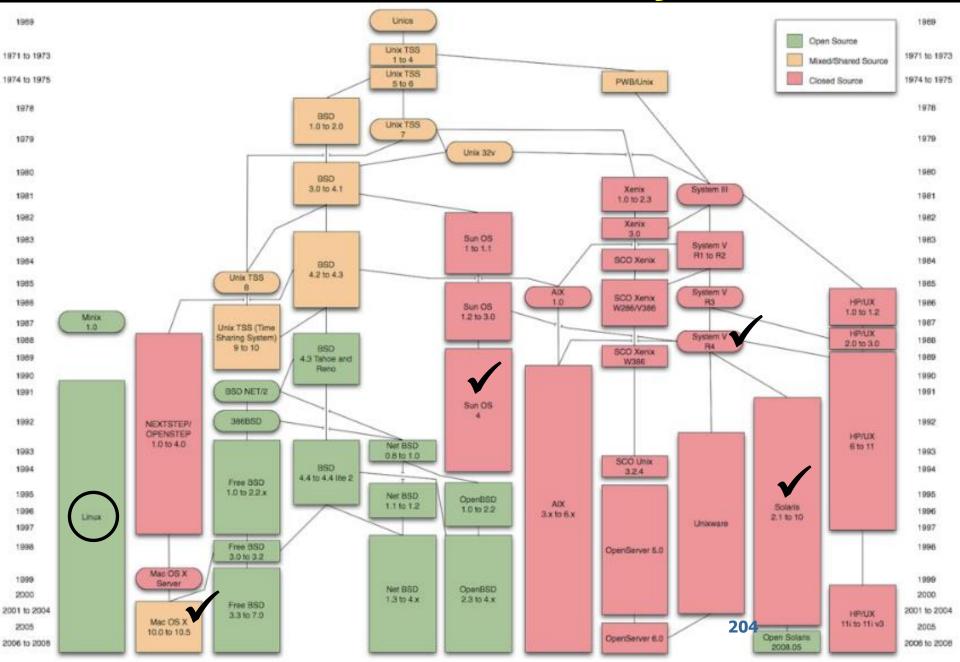
* 740 KHz = 0.00074 GHz This computer: 2.6 GHz

Most Used Operating Systems

- Home computers:
 - Windows (75.47%)
 - macOS (12.33%)
 - Linux (1.61%)
 - Chrome OS (1.17%)*

- Smartphones—Android (Linux based)
- Tablets—iOS
- Linux in smart devices and IoT
- Linux in Web servers and supercomputers

* As of January 2019. 9.42% other or unknown; see

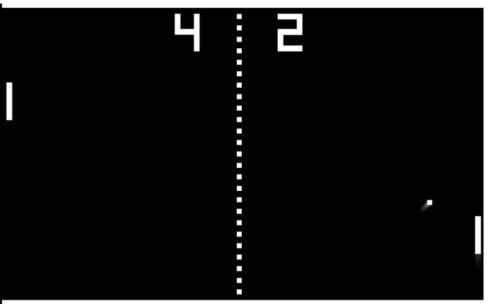


- Developed at Bell Labs (1969-70) by Ken Thompson and Dennis Ritchie
- A multi-user system
- Developed on DEC PDP 11/20
- Written in assembler language
- For word processing...
 - for patent applications
 - ed text editor and formatting with nroff
- *nroff* quickly spawned *troff* the first electronic publishing system

Unix (cont.)

- 1972-73—the "C" programming language created by Dennis Ritchie
- 1973—Unix was re-written in "C"
- 1973—Unix licensed to educational institutions

The Unix Family



HP-35 Scientific Calculator

- Released in 1972
- Marketed as "The new electronic slide rule"
- A slide rule killer!
- \$395—\$2,400 in today's money

- 1972 Created by Alan Alcorn at Atari
- The first video game
- As a programming training exercise
- Became wildly popular
- Launched the electronic game industry

Honeywell vs. Sperry Rand

- 1964—Sperry Rand Corp granted a patent filed by Eckert and Mauchly for the ENIAC
- Sperry Rand sued Honeywell on claims of patent infringement
- Honeywell sued for monopolistic practices and fraud seeking to invalidate their patent
- Ruling (October 19, 1973):
 - court invalidated Sperry Rand's patent
 - assigned invention of electronic digital computer to John V. Atanasoff
 - put invention of electronic digital computer in public domain

Xerox 9700 Laser Printer 🔍 🔍

- First commercial laser printer
 - released October 1977
- Developed by Gary Starkweather at PARC in early 1970s
- Used a PDP 11/34 for print controller and rasterizer
- 300 dpi
- 120 pages/minute
- Price \$500,000 (?)

Xerox PARC Alto Computer .

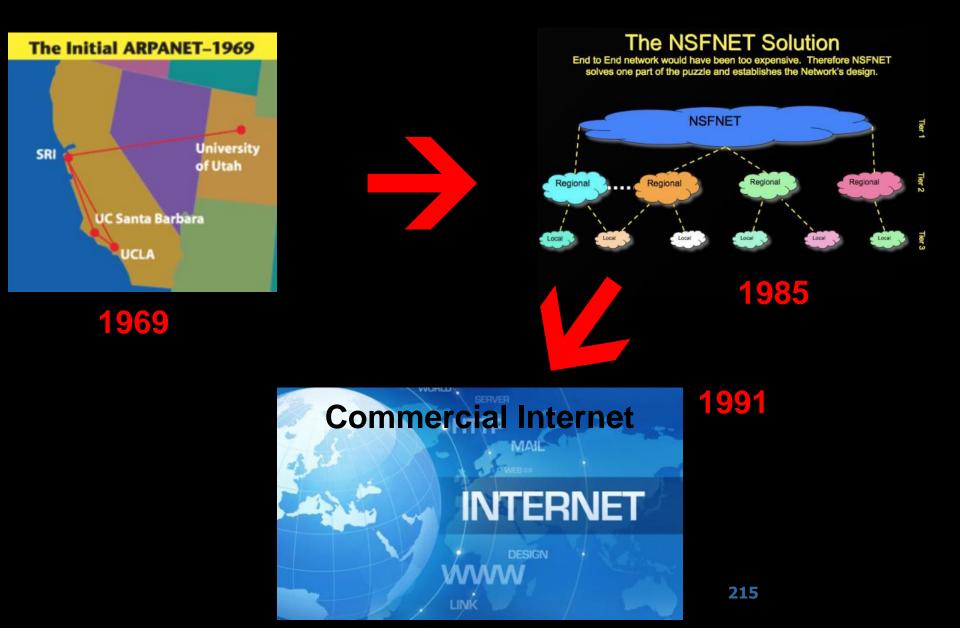
- 1973—first computer with graphics oriented OS
 - decade before other GUI computers
- Mouse
- Late 1970s thousands in use at Xerox facilities
- ~500 at universities
- 1979 Steve Jobs visited PARC
- 1981—attempts to market for \$100,000 (\$289,000 today)

Cray 1 Supercomputer .

Cray 1 Supercomputer

- 1976—first installed Los Alamos National Laboratory
- 64-bit processor; 80 MHz*
- 8.39 MB RAM
- Storage 303 MB
- Price \$7.9 million (\$36 million today)
- Eventually >100 sold
- Ten times faster than closest competitor
- One of most successful supercomputers in history
- * 80 MHz = 0.08 GHz This computer: 2.6 GHz

The Internet



2004 Stamp of Azerbaijan 35 Years of the Internet, 1969–2004

Pre-Internet Thoughts

- Early 1900s—Nikola Tesla imagines a "world wireless system"
- 1930s & 40s—Paul Otlet and Vannevar Bush conceive searchable storage system for books and other media
- Early 1960s—J.C.R. Licklider popularized idea of an "Intergalactic Network"
- 1965—Ted Nelson published article about hypertext

Internet History in a Nutshell

The Internet

- 1969—DoD created ARPANET*
 - linking UCLA, UC Santa Barbara, Stanford (SRI), and University of Utah
 - first message "LO" for "LOGIN"...
 - ... then Stanford's computer crashed
 - system recovered "LOGIN" sent

* Advanced Research Projects Agency Network

The Internet (cont.)

- 1974—first ISP (Telenet) established; commercial version of ARPANET
- 1981—NSF provided a grant to establish Computer Science Network (CSNET)

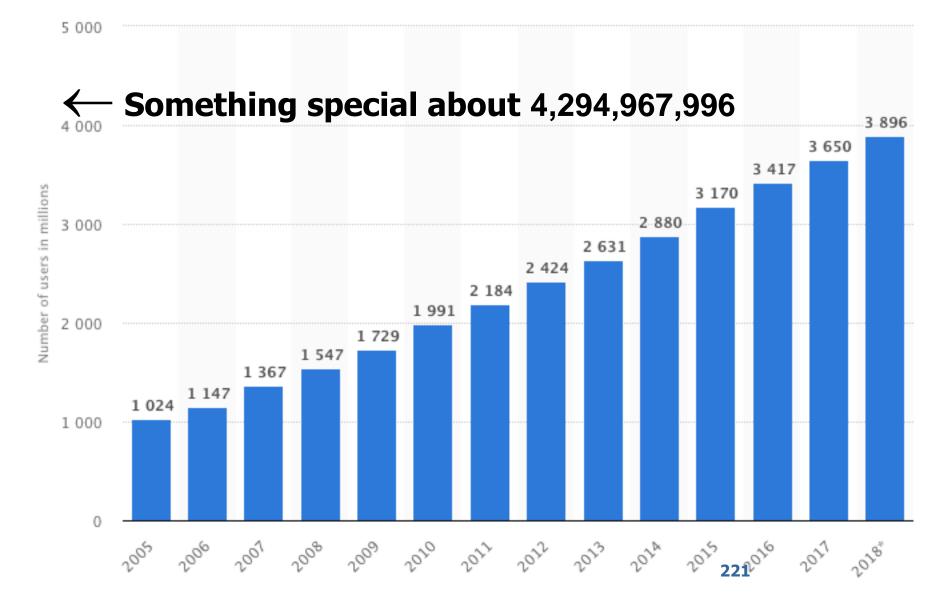
 providing networking services to university computer scientists (an ISP)

- 1983—ARPANET adopted TCP/IP
- 1983—DNS established (.com, .edu, .gov)
- 1985—Symbolics Computer Corp became the first registered domain "Symbolics.com"

The Internet (cont.)

- 1985—NSFNET established
- 1986—both NSFNET and ARPANET quickly expanded across U.S.
- 1987—20,000 hosts on the Internet
- 1987—Cisco shipped first router
- 1990—Tim Berners-Lee developed World Wide Web at CERN (released 1991)

The Internet (cont.)


- 1991—NSF opened the Internet to commerce
- 1994—Justin Hall developed the "blog"
- 1995—NSF turned over Internet backbone to private industry (NSFNET discontinued)
- Was the Internet designed for survival of communications in the event of nuclear war?
 - Yes-DoD, who funded its development
 - No—academics who did much of the design and development

Guardian of The Internet

- 1998-—established as international not-for-profit
- Assigns, manages and controls the domain name system (DNS)
- Example domain name:
 - gmu.edu
 - 129.174.1.59
- <u>Does not control Internet content</u>

Internet Users 2005-2018

"Crowded Internet Problem"

- Each user on the Internet requires an IP address, example 192.168.40.88
- At present IP addresses (IPv4) use 32 bits (4 bytes) which accommodates 2³² users, i.e., 4,294,967,996
- Remember the "Year 2000" problem?
 Solution...
- IPv6, using 128 bits, is being deployed $-2^{128} = 3.4028 \times 10^{38}$ addresses

IBM 5100

- 1975—introduced on the market
- First (?) "portable" computer, 53 lbs
- IBM Palm CPU, 1.9 MHz* 🜨
- Price \$9,000 to \$20,000 (\$42,500 to \$94,500 today)

* 1.9 MHz = 0.0019 GHz This computer: 2.6 GHz

Personal Computer Timeline

- 1975—IBM launches IBM 5100, first to look like a modern desktop PC
- 1975—Microsoft founded by Bill Gates and Paul Allen
- 1976—Apple founded by Steve Jobs and Steve Wozniak
- 1976—Apple sold 200 Apple 1 computers

Apple Computer Manufacturing Facility

Personal Computer Timeline (cont.)

- 1977—Radio Shack introduced TRS-80
- 1977—Commodore PET introduced
- 1981—IBM launched PC with licensed Microsoft's DOS
- 1981—Osborne 1; \$1,800* (23.5 lbs) (CP/M)
- 1983—Compaq Portable, IBM PC compatible (Microsoft DOS), \$3,590**, 28 lbs.
- 1984—Dell Computer Corporation launched

* \$5,000 in 2019 dollars ** \$9,590 in 2019 dollars

Personal Computer Timeline (cont.)

- 1984—Apple launched the Macintosh
- 1985—Microsoft introduced Windows OS
- 1980s-90s—Numerous advances in Windows PCs and Apple computers
- 2002—one billionth PC sold
- 2008—laptop shipments overtook desktop computer sales
- 2007-2019—smartphones

Homebrew Computer Club 옾 옾

- March 1975—first meeting in Gordon French's garage in Menlo Park, California
- Hobbyists, engineers, programmers
- After one year ~750 members
- Three notable members:
 - Steve Jobs
 - Adam Osborne
 - Steve Wozniak
- At least 23 tech companies got their start at Homebrew

Computer clubs continue to form around the country...E. Brooner would like to have material to help him get started with the "Flathead Computer Society" in the Kalispell area. His Address is P.O. Box 236, Lakeside, Montana 59922.

By Robert Reiling

Did you see the SOL terminal demonstrated by Bob Marsh at the Sept. 1st meeting? An excellent design that will interest hobbyists and commercial users alike. It's available from Processor Technology. 6200 Hollis St., Emeryville, CA 94608. Write them for prices and specifications.

The OSI Systems Journal has been sent to all OSI customers (free-at least for the time being). It's a bimonthly magazine with plans to go monthly in the future. There are 28 pages in the first issue (August 1976, Vol. 1, No. 1) with a hardware feature covering the OSI 440 Video Graphics System and software, features concerning Tiny BASIC for the 6800 and a Graphics Editor for the 6502. It also includes OSI product and software catalog data. The BASIC is, of course, the 2K Tiny BASIC developed by Tom Pittman. Many of you have met Tom at the Homebrew computer Club meetings. The OSI Systems Journal is a good way to learn more about the OSI computer hardware and software along with helpful user information. The contact address is: The OSI Systems Journal, P.O. Box 134, Hiram, Ohio 44234.

KIM-1 users now have a newsletter. Eric Rehnke is producing the newsletter every 5-8 weeks, MOS Technology, Inc. helped get it started by sending copies to all known KIM owners. The user group, however, is independent of MOS Technology, Inc. The newsletter is devoted to KIM-1 support. Subscriptions are \$5.00 for the next six issues. Contact "KIM-1 User Notes," c/o Eric C. Rehnke, Apt. 207, 7656 Broadview Rd., Parma, Ohio 44134.

The BAMUG club has a new contact address. It is BAMUG, c/o Timothy O'Hare, 1211 Santa Clara Ave., Alameda, CA 94501. Write Timothy for club information. I suggest you include a stamped, self-addressed envelope.

Beware of board snatchers! Glenn Ewing reports 11 boards were taken out of his IMSAI computer. The boards are: MPU, 4 RAM-4's, SIO-2, P10-4, PIC-8, PROM-4, IFM and FIB. Glenn suggests you consider providing good security for your computer and associated equipment. In his case the computer was in a locked office which was burglarized. In the event you

Ewing, Code 62EI, Naval Post Graduate School, Monterey, CA 93940.

For family and friends of people who always wanted to know about computers, but didn't want to ask them, four easy-going classes are available starting Oct. 19th on Tuesdays from 7 to 9 p.m. You can learn how computers work and what they can and can't do. You will also have some of the jargon deciphered, see what you can do with a computer, play some games and learn to program. The cost is \$25. Contact the Community Computer Center, 1919 Menalto Ave., Menlo Park, CA 94025, phone (415) 325-4444.

A call for papers in personal computing has been issued by the 1977 National Computer Conference. The conference is scheduled for June 13-16, 1977. I have a few copies of the guidlines if you would like to submit a paper.

The First West Coast Computer Faire will be held April 16 and 17, 1977 at the San Francisco Civic Auditorium. This faire is shaping up rapidly. If you would like to lead a conference or participate in a conference session, please contact me. More information about the Faire is in the accompanying article.□

THE FIRST WEST COAST COMPUTER FAIRE A Call For Papers And Participation

The San Francisco Bay Area is finally going to have a major conference and exhibition exclusively concerned with personal and home computing-The First West Coast Computer Faire. And, it promises to be a massive one! It will take place in the largest convention facility in Northern California: The Civic Auditorium in San Francisco. It will be a two-and-a-half day affair, starting on Friday evening and running through Sunday evening, April 15-17.

It is being sponsored by a number of local and regional hobbyist clubs, educational organizations and professional groups. These include:

The two largest amateur computer organizations in the United States-the Homebrew Computer Club and the Southern California Computer Society

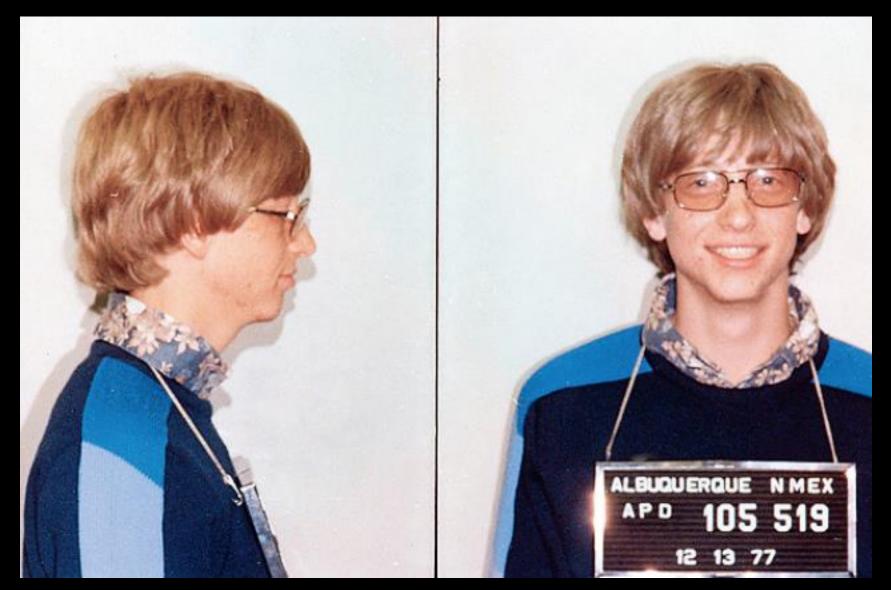
Both of the Bay Area chapters of the Association Of Computing Machinery-the San Francisco Chapter and the Golden Gate Chapter Stanford University's Electrical Engineering Department

PROJECT BREAKTHROUGH!

World's First Minicomputer Kit to Rival Commercial Models... "ALTAIR 8800" SAVE OVER \$1000

ALSO IN THIS ISSUE:

10100

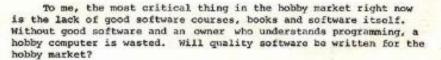

(A)

An Under-\$90 Scientific Calculator Project
 CCD's-TV Camera Tube Successor?
 Thyristor-Controlled Photoflashers

TEST REPORTS:

Technics 200 Speaker System Pioneer RT-1011 Open-Real Recorder Tram Diamond-4 Edmund Scientil Hewlett-Packar

Guess Who?



February 3, 1976

Bill Gates' open letter to Homebrew Newsletter...

...decrying theft of software by hobbyists passing on Microsoft's Altair BASIC

An Open Letter to Hobbyists

Almost a year ago, Paul Allen and myself, expecting the hobby market to expand, hired Monte Davidoff and developed Altair BASIC. Though the initial work took only two months, the three of us have spent most of the last year documenting, improving and adding features to BASIC. Now we have 4K, 6K, EXTENDED, ROM and DISK BASIC. The value of the computer time we have used exceeds \$40,000.

The feedback we have gotten from the hundreds of people who say they are using BASIC has all been positive. Two surprising things are apparent, however. 1) Most of these "users" never bought BASIC (less than 10% of all Altair owners have bought BASIC), and 2) The amount of royalties we have received from sales to hobbyists makes the time spent of Altair BASIC worth less than \$2 an hour.

Why is this? As the majority of hobbyists must be aware, most of you steal your software. Hardware must be paid for, but software is something to share. Who cares if the people who worked on it get paid?

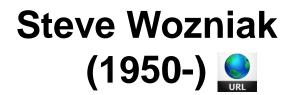
Is this fair? One thing you don't do by stealing software is get back at MITS for some problem you may have had. MITS doesn't make money selling software. The royalty paid to us, the manual, the tape and the overhead make it a break-even operation. One thing you do do is prevent good software from being written. Who can afford to do professional work for nothing? What hobbyist can put 3-man years into programming, finding all bugs, documenting his product and distribute for free? The fact is, no one besides us has invested a lot of money in hobby software. We have written 6800 BASIC, and are writing 9080 APL and 6800 APL, but there is very little incentive to make this software available to hobbyists. Most directly, the thing you do is theft.

What about the guys who re-sell Altair BASIC, aren't they making money on hobby software? Yes, but those who have been reported to us may lose in the end. They are the ones who give hobbyists a bad name, and should be kicked out of any club meeting they show up at.

I would appreciate letters from any one who wants to pay up, or has a suggestion or comment. Just write me at 1180 Alvarado SE, #114, Albuquerque, New Mexico, 87108. Nothing would please me more than being able to hire ten programmers and deluge the hobby market with good software.

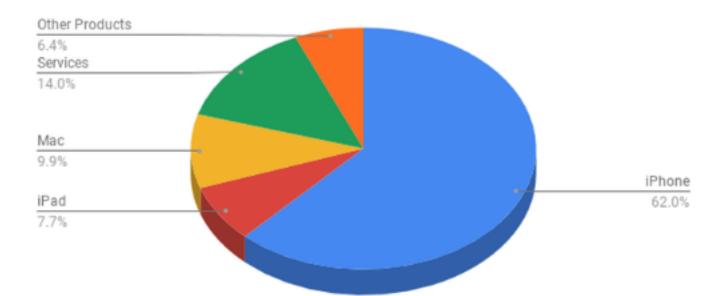
General Partner, Micro-Soft

Microsoft


- 1975—founded by Bill Gates and Paul Allen
 to develop and sell BASIC for Altair 8800
- Products:
 - 1980—MS-DOS (licensed to IBM)
 - 1985—Microsoft Windows
 - 1990-Microsoft Office
 - 2001—Xbox
 - 2008--Azure Services (Cloud computing)
 - 2011—Office 365
 - 2012—The Surface laptops
- 2019—Market capitalization \$1.07 trillion

Guess Who?

1973—visited the guru Maharaj-ji in India


Who was the third founder of Apple?

Apple, Inc.

- 1976—founded by Steve Jobs, Steve Wozniak and Ronald Wayne*
- Products:
 - 1970s—computers
 - 2001-iTunes
 - 2001—iPod
 - 2007—Apple TV
 - 2007—iPhone
 - 2012—iPad
 - 2014—Apple Pay
 - 2015—Apple Music
 - 2016—Apple Watch
 - 2019-Credit card & entertainment (streaming, games, etc)
- 2019—market capitalization \$962 billion
- * In 1976 sold his 10% share in Apple for \$800

Apple, Inc. Search Computer Company The Smartphone Company

Apple revenue by category (ttm)

2018 revenue from computer sales \$25.3 billion Profit margin of \sim 30% = \$7.59 billion profit

80 Years of Computer History Lorrin R. Garson

Lifetime Learning Institute of Northern Virginia Summer 2019

> Lecture 3 of 3 September 5, 2019

© 2019 Lorrin R. Garson

Apple, Inc. The Computer Company The Smartphone Company

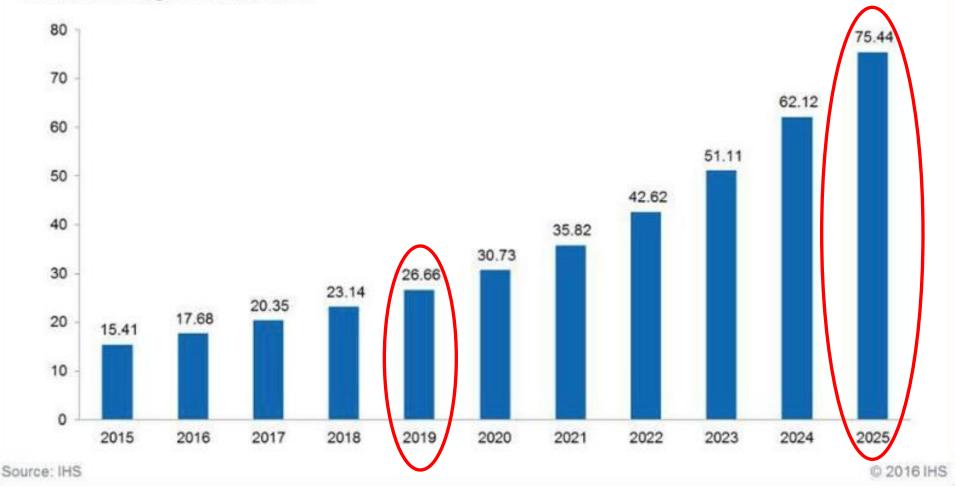
Apple revenue by category (ttm)

2018 revenue from computer sales \$25.3 billion Profit margin of \sim 30% = \$7.59 billion profit

- 1980—first HDD for PC (5.25-in)
- 5 MB capacity
- \$1,500 (\$4,800 today's money)

Sun 1 Workstation

- 1982—designed by graduate students at Stanford University
- SunOS (derived from Unix 7)
- Motorola 68000 CPU,10 MHz*
- 256 KB to 2 MB RAM
- No windows system (later X Window)
- 2010—Sun Microsystems purchased by Oracle Corp.
- * 10 MHz = 0.01 GHz This computer: 2.6 GHz


The First "Internet of Things*" 🔍 🔍

- 1982—Coke vending machine at Carnegie Mellon University
- "Called home" to report:
 - inventory
 - temperature of drinks

Growth: Internet of Things 🔝 🎑 (number devices—billions)

IoT installed base, global market, billions

Smart Speakers

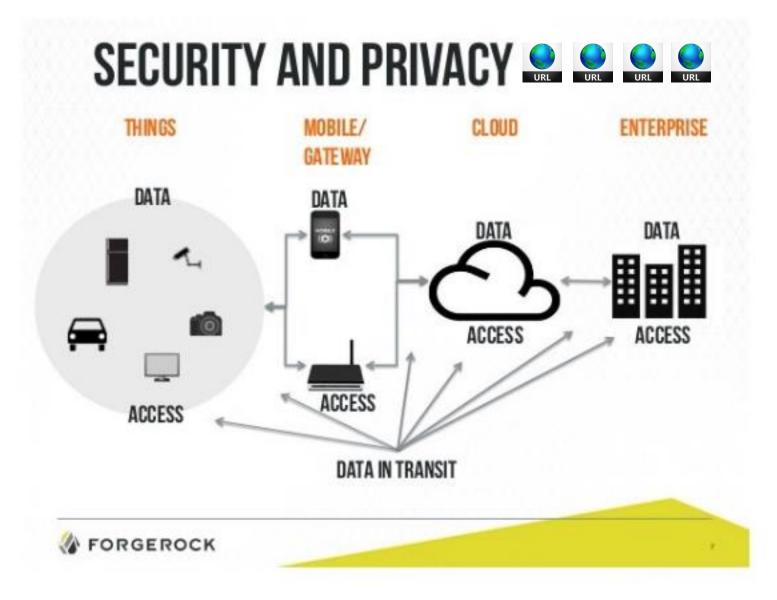
Amazon Echo*Google HomeApple HomePod2nd Gen

* The Amazon Echo first came out on November 6, 2014

Internet of Things

Meet Meural (2015)

Experience the world of art at your fingertips



The Meural Canvas is a smart art frame that renders images as lifelike and textured as museum originals. Each Meural Canvas combines state-of-the-art tech with artful design:

- · With TrueArt technology, you can see each and every brushstroke
- It's easy to upload your own images
- Works with Alexa for voice control
- Three ways to control: the wave of your hand, our app, and our online dashboard
- · Hang in vertical or horizontal-the frame automatically detects its orientation

Internet of Things

CD-ROMs* and DVDs

- 1984—Grollier's Electronic Encyclopedia (12% of capacity)
- Standard CD-ROM 120 mm holds 550-737 MB
- 1997—DVDs available
 - 15 types
 - 3.95 to 9.39 GB capacity

Richard Stallman (1953-)

Richard Stallman

Open Source Software

	Year	
Name	Established	URL
GNU Project	1983	URL
Free Software Foundation	1985	
Open Source Initiative	1998	URL
Apache Software Foundation	1999	URL
Linux Foundation	2000	URL
Gnome Foundation	2000	URL
Python Software Foundation	2001	URL
Eclipse Foundation	2004	URL
Software Freedom Law Center	2005	URL
OW2 Consortium	2007	URL

Free Office Automation Software

Name	URL	Comments
Google Docs		Web-based, works with any browser
iWork		macOS
LibreOffice	URL	Window, macOS, Linux
NeoOffice	URL	macOS
Polaris Office		Windows, macOS, iOS, Android
SoftMaker FreeOffice	URL	Windows, macOS, Linux
WPS Office	URL	Windows, Linux, iOS, Android

Not Free

- Microsoft Office—Office 365 is now dominant
- Google's G Suite

Microsoft Word 옾 옾

- Introduced in 1983 under the name "Multi-Tool Word" for Xenix computer
- 1983—for IBM PCs and Apple OS
- 1985—AT&T Unix PC and Atari ST (Tramiel OS)
- 1989—Microsoft Windows and SCO Unix
- 1988—Microsoft Office (Windows and macOS)
 - Word
 - Excel
 - PowerPoint
 - Outlook (1997)
 - OneNote
 - Publisher and Access (Windows only)

Famous Apple Commercial

- 1995—Clio Awards Hall of Fame
- 1995—Advertising Age, Greatest Commercial
- 1999—TV Guide, Greatest Commercial of All Time
- 2003—Hall of Fame Award
- 2007—Best Super Bowl Spot
- Others...
- Available on YouTube

- 1985—founded by Steve Jobs
- Created three generations of the NeXT computers (a workstation for the academic market)
- Created the Unix-like NeXTSTEP operating system
- 1990s—used at George Mason University
- 1990s—used by Tim Berners-Lee to create WWW
- 1997—Apple purchased NeXT Inc. to acquire
 - Steve Jobs
 - NeXTSTEP OS

The Morris Worm 🔍 🔍

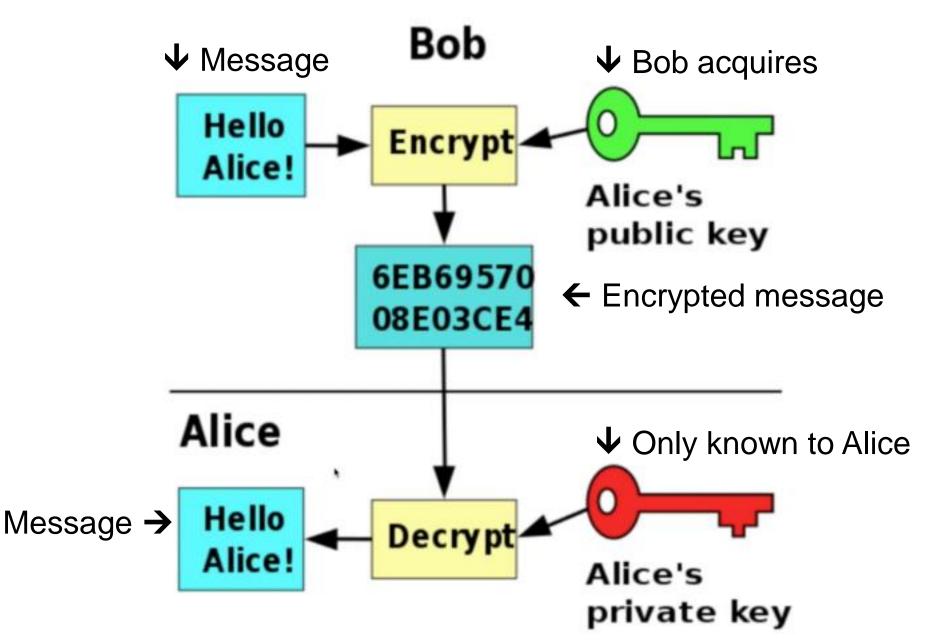
- 1988—Robert Morris, age 23, released an Internet worm, aka "The Great Worm"
 - caused major problems for days infecting 1000s of Unix computers
 - a denial of service attack
 - first person convicted under "Computer Fraud and Abuse Act"
- Son of a computer security expert at NSA
- Robert Morris became tenured professor at MIT in 2006

Computer Defeats Master Chess Players

- 1989—IBM Computer "Deep Thought" defeated David Levy
- 1996—IBM "Deep Blue" defeated Garry Kasparov*; 4 to 2 games
- 1997–rematch, computer wins again 3.5 to 2.5 games
 - * Reigning world champion and Grand Master

1990s

PGP Software 🚨


 1991—PGP* encryption software created by Phil Zimmermann .

- uses an exchange of public and private keys

- Used for encryption of e-mail, files, directories, disk partitions, etc.
- 1993—U.S. government started a criminal investigation; dropped case in 1996
- 2002—PGP, Inc. formed
- 2010—Symantec acquired PGP, Inc.

^{*} Pretty Good Privacy

Encrypted Communications

Google

Larry Page (left) and Sergey Brin in garage in Menlo Park (Garage belonged to Susan Wojcicki, now CEO of YouTube)

- 1998—Google, Inc. founded
- 1998—had an index of ~ 60 million Web pages
 crawling the Web, indexing & ranking
- 1998—widely recognized as best search engine
- Unofficial Google moto "Don't be evil"
- 2000—started selling ads based on:
 - price bid 🔜
 - click-throughs (average \$1 to \$2/click)
- 2004—Google went public

Google (cont.)

- 2015—reorganized as Alphabet, a holding company
- 70 offices in 50 countries (?)
- 2019—market capitalization (Alphabet, Inc.) \$835 billion

- 1994—established, selling books online
 software, video games, apparel, jewelry, etc.
- 2005—Web Services started (Cloud storage)
- 2007—Amazon Fresh
- 2007—Amazon Kindle
- 2010—Sales of Kindle books > hardcopies
- 2014—Amazon Echo
- 2015—Amazon Restaurants
- 2017—Whole Foods acquired
- 2019—market capitalization \$904 billion

Cloud Storage and Services

Your backup isn't here

Cloud Storage & Services

Cameron Chase Village Center-

mint

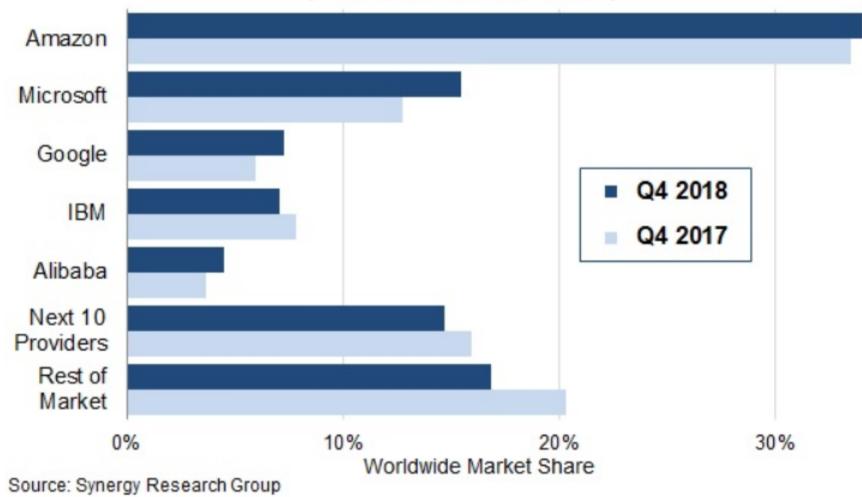
Ashburn

۴i

© 2018 Google

A REAL PROPERTY OF

-


W80D Trail Park

Cloud Storage & Services

Cloud Infrastructure Services - Market Share

(IaaS, PaaS, Hosted Private Cloud)

- 1991—Torvalds released the Linux kernel*
- 1992—Kernel became open source
- Kernel included in all Linux distributions ("distros"), i.e., Debian, Fedora, Ubuntu...
- Used in <2% of desktop computers
- Linux leading OS in servers & supercomputers
- Used in TVs, routers, cars... and lots of IoT

* Kernel—lowest level of software that interfaces hardware with applications 274

-

- 324 million lines of code (2009)
- 1000s
 developers

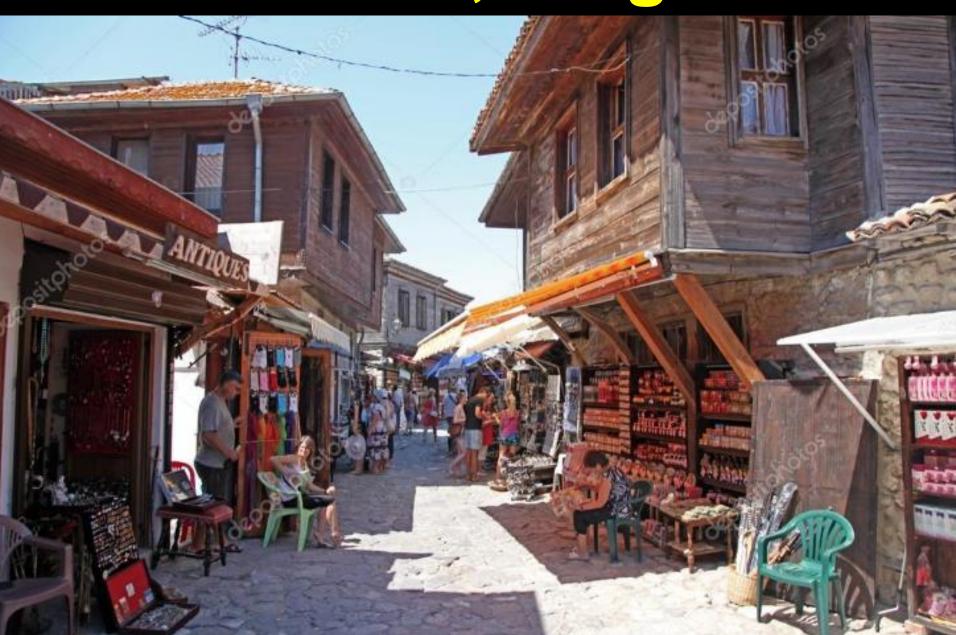
The Dark Web* 🖳 🔍

- 1990s—created by U.S. government to exchange information anonymously
 - known as the TOR project
 - accessed using the Tor Browser
- Widely distributed systems
- Uses:
 - Secret/anonymous communications
 - Sale of drugs, arms, prostitution, etc.
 - Used by criminal groups

* Not to be confused with the "Deep Web"²⁷⁶

Silk Road 🚨

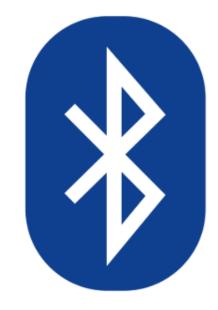
- 2011—Launched by Ross Ulbricht, aka "Dread Pirate Roberts"
- First (?) "darknet" black market, selling:
 - drugs
 - arms
 - forged documents
 - murder-for-hire (?)
- 2013—shut down by FBI
- 2015—Ulbricht convicted of numerous crimes and sentenced to life plus 40 years without parole


- Introduced in 1997
- 2.4 GHz, frequency...
 - multiple channels
 - range 150 feet indoors
 - range 300 feet outdoors
- 5 GHz frequency...
 - multiple channels
 - $-\sim \frac{1}{3}$ the range of 2.4 GHz but higher speed
- 7 frequencies each with multiple channels
- A tortured history of numerous lawsuits between patent holders

WiFi Standards 🚨

WiFi Standard	Networks
WiFi 1	802.11b
WiFi 2	802.11a
WiFi 3	802.11g
WiFi 4	802.11n
WiFi 5	802.11ac

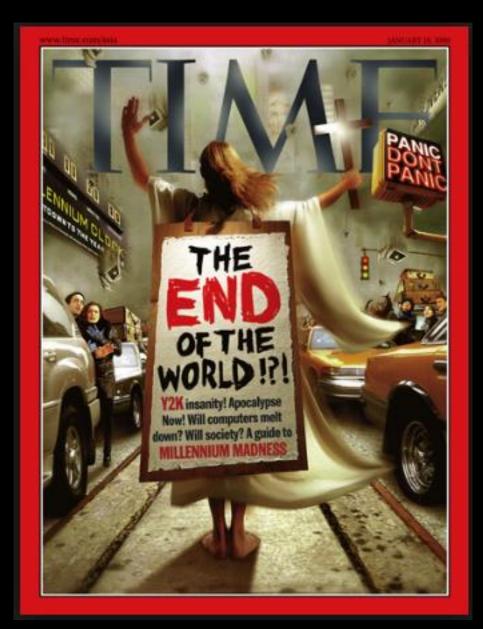
WiFi 6 (802.11ax) coming 3rd Q 2019


Nessebar, Bulgaria

Harald Gormsson King of Denmark 940-981

← Harald "Bluetooth" Gormsson Liked to snack on blueberries

Bluetooth 🚨 🚨


- 1994—invented by Jaap Haartsen
 released 1998
- Peer-to-peer communication technology
- Range...
 - Initally: <33 feet
 - Bluetooth 5.0: 100 to 1,000 feet
- Installed in billions of devices each year

2000s

Year 2000 Fiasco

You Can't Avoid It! SURVIVAL STRATEGIES FOR:

Feeding Your Family

- Staying Warm
- Accessing Cash

 Coping Without Utilities and Transportation
 WHEN THE COMPUTER
 BUG STRIKES!

An Action Plan to Protect Yourself, Your Family, Your Assets, and Your Community On JANUARY 1, 2000

VICTOR W. PORLIER

Former Chief of Information Systems Development U.S. State Department's Agency for International Development

Author of the New Hork Eines Bestseller

The Millennium Bug

he YZK Persona Surviva Everything you need to know to get from this side of the crisis to the other


You know the Y2K threat is real, and less than a year away... But DON'T PANIC Here's everything you need to survive. Simply

- Assess your preparednes and see what you must do to protect yourself and your family, then
- Follow the step-by-step Preparation Checklist in each chapter—so nothing is left to chance

PLUS:

- Hundreds of resources for finding the emergence supplies you need
- Contingency plans whether the crisis lasts for 72 hours, 30 days, 3 months, or 1 year

There's still time, but you must get started now. This book provides the simple, comprehensive plan you need to survive the coming crisis.

Dates stored in 2 bytes (string variable): "60" for 1960, "99" for 1999

✓ 99 - 60 = 39 (no problem)

- When year 2000 arrived "00"…
 ✓ 00 60 = -60 (a problem)
- If dates had been stored as 2 byte integers, dates up to 65,536 (2¹⁶) could have been accommodated

✓ 2000_{int} - 1960_{int} = 40 (no problem)

The 2038 Problem

On Tuesday, January 19, 2038 [at 03:14:07 (UTC)]

Some computers' time will revert to...

Friday, December 13, 1901 [at 20:45:52 (UTC)]

Worry-warts enjoy the angst!

2000 (?)—"First" Thumb Drive (IBM)*

* "First" to mass market in the U.S.

Thumb Drives

- 2000—sold by IBM, 8 MB capacity
- Capacity today: 4 GB to 1 TB
- Longevity: 3,000 to 100,000 writes

Connectors	USB 1.0 1996	USB 2.0 2001	USB 2.0 Revised	USB 3.0 2011	USB 3.1 & 3.2 2014 & 2017		
Data rate	187.5 kB/s (<i>Low</i> <i>Speed</i>)	60 MB/s	60 MB/s	625 MB/s	1.25 GB/s		
Data fate	1.5 MB/s (<i>Full</i> <i>Speed</i>)			(SuperSpeed)	2.5 GB/s (<i>SuperSpeed+</i>)		
		Туре А		Туре А			
		1 2 3 4 Type-A		9 8 7 6 5 1 2 3 4 Type-A SuperSpeed			

Unusual Thumb Drives

2000—Sony's Playstation 2

Playstation 2

- Priced at \$299 (\$441 today)
- Best selling home game console of all time; 155 million units sold
- ~4,000 games available; 1.5 billion copies sold
- Production ceased in 2013
- Current model Playstation 4 (\$300-\$400)

WIKIPEDIA The Free Encyclopedia

Wikipedia 🔐 🔐

- Created by Jimmy Wales & Larry Sanger

 released January 15, 2001
- Owned by the Wikimedia Foundation*
- Funded by donations
- Many millions of articles in 301 languages
- Articles community posted and edited
- Criticisms—read all about it in Wikipedia
 and other sources
- * A not-for-profit organization in San Francisco

Logarithm	nic graph of the 20 la	• • •		s of Wil	kipedia								
		April 2019) ^{[132}	-1										
	1	ns of articles)	_	I			1						
0.1	0.3		1		3								
English 5,844,664													
	Cebua					URL							
	Swedish												
	German 2,291												
	Dutch 1,963,46												
	Spanish 1,516,327												
Vietnamese 1,205,756					Encyclonadia Britannic								
		 Encyclopædia Britannica ~100,000 articles (online) 2010 last print edition 											
(~1												
Po	20												
U													
A													
Per													
Serb													
Cata	lan 610,998												

Mark Zuckerberg (1984-)

Founders

Mark Zuckerberg Eduardo Saverin Andrew McCollum Dustin Moskovitz Chris Hughes

Facebook

- 2004—established at Harvard University as online student directory with pictures
- 2004—most universities in U.S. & Canada
- 2004—numerous lawsuits (settled in 2008)
- 2006—open to anyone at least 13 years old
- Evolved into a broad social network service
- 2012—IPO, largest initial valuation to date in 2012 (\$104 billion)
- 2018—2.2 billion active monthly users
- 2019—market capitalization \$543 billion

Facebook

- Controversies:
 - Privacy
 - Censorship
 - Objectionable content
 - Adverse psychological effects on young users
 - Inadequate computer security
 - ✓100s of millions passwords stored as plain text
 - ✓ September 2019—millions of customers private data stolen

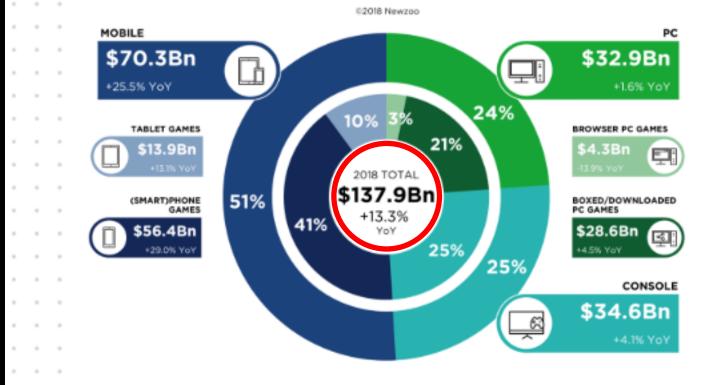
2005 DARPA Grand Challenge

Defense Advanced Research Projects Agency

DARPA Grand Challenge

- Driverless car competition (2005)
- 113 miles alongside of Interstate 15, Barstow, California to Primm, Nevada
- 23 vehicles in the race—5 completed course
- Winning car "Stanley" in 6 hr, 54 min (16 mph)
 - Stanford University
 - VW Electronics Research Laboratory
- \$2 million prize

2006—Nintendo Wii 🖳



Nintendo Wii

- 2006—7th generation released, price: \$249.99 (today \$316)
- 2006—first quarter 101 million units sold (\$31.9 billion revenue today's money)
- 2013—product discontinued
- Current product Nintendo Switch (~\$300)
- 2019—Nintendo still very active

 founded 1889 (playing cards)
 about 6,000 employees

Global movie industry (2018) \$41.1 billion 🥃

Established January 9, 2009

Bitcoin*

- Created by Satoshi Nakamoto (a pseudonym)
- A traceless, electronic cash payment system
 - distributed on many computers
 - a public ledger recording who owns each unit of available Bitcoin (blockchain technology)
 - money transfer: debit one owner and credit another owner
- Owners are registered as an alias string of characters (public address)
- Proof of ID/ownership accomplished by public/private key cryptography
- * aka a cryptocurrency

Bitcoin (cont.)

- Potential maximum of 21 million Bitcoins in existence (think world's gold supply)
- Increasing the Bitcoin supply is complex and unlikely to occur in the foreseeable future
- 4.3 million Bitcoins remain to be identified
- Bitcoin identification is called "mining"
- There are rules limiting the number of Bitcoins that can be annually "mined"

Bitcoin Mining

- Successful identification accrues a Bitcoin reward
- Mining requires:
 - considerable computer resources
 - large quantities of electricity consumed for computing and cooling

 ✓ world-wide electricity consumption for mining equal to 1.1% of U.S. annual electricity production

- ✓~50 TWh (50 billion kWh)
- ✓ at a cost of \$6.25 billion

Bitcoin Criticisms

- High electricity consumption from mining
- Illegal transactions by criminals
- Price volatility of Bitcoin
- Considerable speculation
- Thefts from exchanges*
- Threat of an economic bubble

* CNN reported May 8, 2019 that hackers had stolen \$40 million worth of Bitcoin

California Gold Rush of 1849

Bitcoin Rush of 2017-18

An Unintended Consequence

Bitcoin miners caused worldwide shortage of GPUs

2010s

World's Smallest Computer

grain of rice

The Michigan Micro Mote 🔝 옾

- Created at the University of Michigan in 2015
- 0.3 mm on a side
- All data and programs lost when turned off
- CPU—Phoenix processor
- RAM (amount?)
- Solar cells
- Wireless transmitter

Some Gloomy Stuff...

Remember the Morris Worm?

Stuxnet Worm

The Stuxnet Worm

- Some uncertainty "whodunit"
- Probably created and released by U.S. and Israel governments
- 2010—discovered by Sergey Ulasen at Kaspersky Labs in Moscow
- Worm targeted Siemens industrial control systems used in uranium enrichment processes
- Probably destroyed ~1000 centrifuges used to enrich U²³⁵ in UF₆

Uranium enrichment facilities, Natanz, Iran

Heartbleed Attack 🔍 🔍

Heartbleed Attack

- Discovered in 2014
- Operates against protocols used to communicate between servers

- one part of which is called "Heartbeat"

- The malware allowed usernames and passwords, e-mails, documents and other sensitive information to be compromised
- ~ 500,000 Web servers affected

The Sony Hack 🔍 🔍

- Discovered November 24, 2014

 duration unknown, at least two months
- Attacker "Guardians of Peace", probably
 North Korean government
- In retaliation against the anti-North Korean movie "The Interview" (a comedy)

The Sony Hack (cont.)

- About 100 TB of data stolen
 - E-mails
 - Salary of executives
 - Financial information
 - Social Security numbers
 - Medical information
 - Celebrity gossip
 - Several unreleased movies
- 2015—about 30,000 documents released to Wikileaks

Ye

20

20

20

20 20 20

20 20

20

20

20 20

20

20

20 20

20

20 20 20

19

PERSONAL BUSINESS

GOVERNMENT ABOUT US -

PRODUCTS & SERVICES

S LEARN & SUPPORT

CREDIT REPORT ASSISTANCE

Impacted by the federal government partial shutdown? Take action and learn more here.

Your Credit, Your Identity.

Stay in control with our individual and family plans.

Equifax Complete™

Premier

Equifax 3-Bureau credit scores

3-Bureau credit report monitoring¹

Social Security Number scanning²

Add a Second Adult (all Premier features)

Equifax credit monitoring for up to 4 children

\$**19**<u>95</u> / month Cancel at any time; no partial month refunds.³ FEATURED PRODUCT

ounts

'n

ople

ers exposed

Equifax Complete™

Family Plan

Equifax 3-Bureau credit scores

3-Bureau credit report monitoring¹

Social Security Number scanning²

✓ Add a Second Adult (all Premier features)

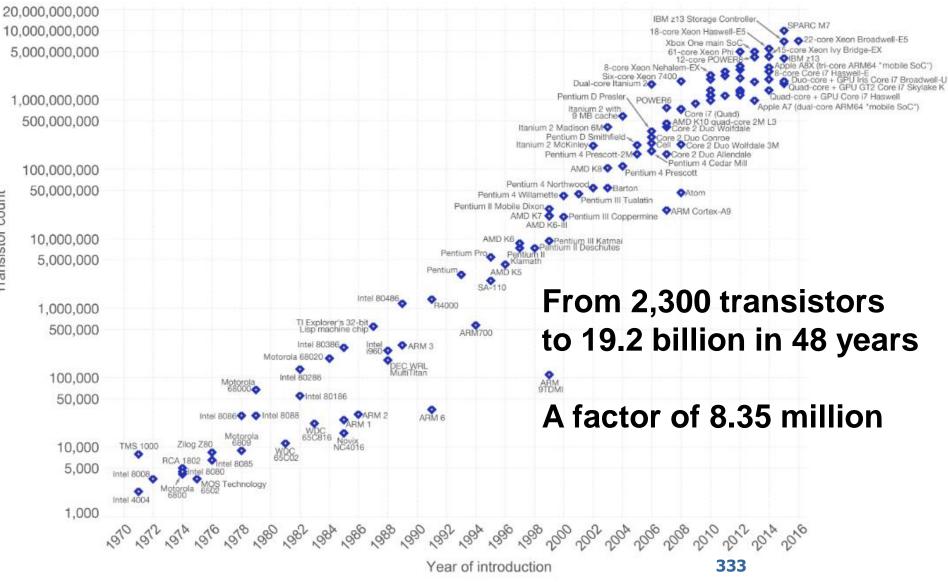
 Equifax credit monitoring for up to 4 children

\$**19**⁹⁵/month

Cancel at anytime; no partial month refunds.³

Year	Supercomputer	Peak speed (Rmax)	Location	
1993	Fujitsu Numerical Wind Tunnel	124.50 GFLOPS	← 124.5 x 10 ⁹ — 124 billion/s	sec
1993	Intel Paragon XP/S 140	143.40 GFLOPS	DoE-Sandia National Laboratories, New Mexico, USA	
1994	Fujitsu Numerical Wind Tunnel	170.40 GFLOPS	National Aerospace Laboratory, Tokyo, Japan	
1996	Hitachi SR2201/1024	220.4 GFLOPS	University of Tokyo, Japan	
	Hitachi CP-PACS/2048	368.2 GFLOPS	University of Tsukuba, Tsukuba, Japan	
1997	Intel ASCI Red/9152	1.338 TFLOPS	DoE-Sandia National Laboratories, New Mexico, USA	
1999	Intel ASCI Red/9632	2.3796 TFLOPS	DUE-Sandia National Laboratories, New Mexico, USA	
2000	IBM ASCI White	7.226 TFLOPS	DoE-Lawrence Livermore National Laboratory, California, USA	
2002	NEC Earth Simulator	35.86 TFLOPS	Earth Simulator Center, Yokohama, Japan	
2004	IBM Blue Gene/L	70.72 TFLOPS	DoE/IBM Rochester, Minnesota, USA	
0005		136.8 TFLOPS		
2005		280.6 TFLOPS	DoE/U.S. National Nuclear Security Administration, Lawrence Livermore National Laboratory, California, USA	
2007		478.2 TFLOPS	Lawrence Liverniore National Laboratory, California, COA	
	IBM Roadrunner	1.026 PFLOPS	DeE Les Alemes National Laboratory, New Maying, USA	
2008		1.105 PFLOPS	DoE-Los Alamos National Laboratory, New Mexico, USA	
2009	Cray Jaguar 1.759 PFLOPS		DoE-Oak Ridge National Laboratory, Tennessee, USA	
2010	Tianhe-IA 2.566 PFLOPS		National Supercomputing Center, Tianjin, China	
2011	Fujitsu K computer	10.51 PFLOPS	RIKEN, Kobe, Japan	
2012	IBM Sequoia	16.32 PFLOPS	Lawrence Livermore National Laboratory, California, USA	
2012	Cray Titan	17.59 PFLOPS	Oak Ridge National Laboratory, Tennessee, USA	
2013	NUDT Tianhe-2	33.86 PFLOPS Guangzhou, China		
2016	Sunway TaihuLight	93.01 PFLOPS	Wuxi, China	
2018	IBM Summit	122.3 PFLOPS	122.3 x 10 ¹⁵ — 122 million billio	n/sec

Factors Affecting CPU Performance


- Clock speed
- Number of transistors
- Cache memory (L1, L2, L3...)
- Number cores
- Lithographic scale*
- Other factors...

* For silicon, at approximately 2 nm, quantum tunneling becomes an issue

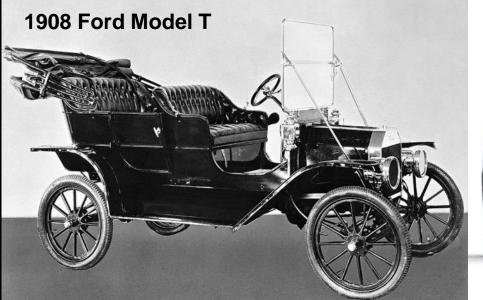
Moore's Law – The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress - such as processing speed or the price of electronic products - are strongly linked to Moore's law.

Advances in CPUs

CPU Model	Year	Cores	Threads	Clock Speed	Number Transistors	Price
Intel 4004	1971					
Intel Core i9- 9900K	2018					

- The Core i9-9900K is an upper-end CPU used in desktop computers
- By-the-way, the AMD Ryzen Epyc has 19.2 billion transistors—largest number on a single CPU chip


Change in Prices of Cars?

Price \$850 \$24,000 in 2019 dollars

Price \$22,840

Change in Prices of Disk Drives?

2019 Ford Fusion

2019

Price of Storage in 1979

75 MB hard disk drive \$12,500 (1979) \$43,200 in today's money 4 TB HDD in 2019

\$69.95

Price per Terabyte

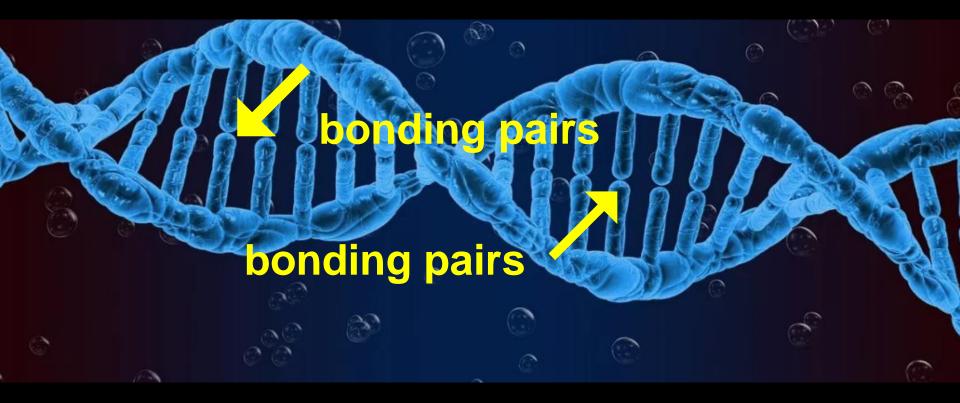
75 MB HDD in 1979 \$576,000,000/TB in today's money

4 TB HDD in 2019 \$17.50/TB

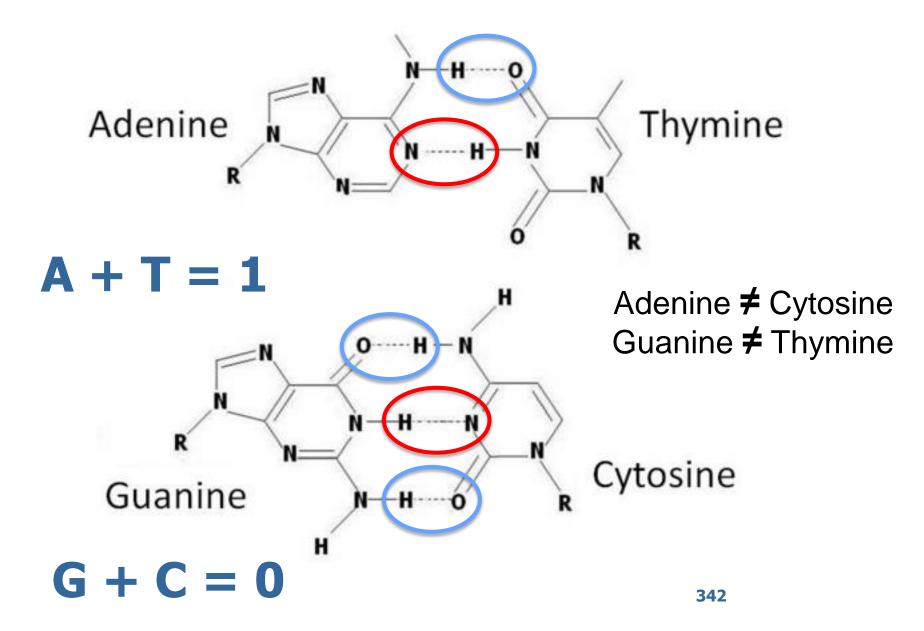
Imagine

If the price of cars had paralleled the price of disk drives...

If Car Prices Paralleled HDD Prices



Price ~\$4,000 \$14,900 in 2019 dollars


\$0.000450 2,223 cars/\$

A Peek Into the Future Be patient—this <u>is</u> relevant to computers!

Deoxyribonucleic Acid... aka DNA

DNA Nucleotide Pairing

What Has Been Stored in Synthetic DNA?

- The word "hello"
- A movie (22 MB)
- Tolstoy's War and Peace
- A computer operating system
- All of Wikipedia in English (16 GB)
- Various bits and pieces...

Useful Properties of DNA

- Massive storage capacity: ~200,000 TB in 1 gram of DNA
- Durable for thousands of years

- Challenges:
 - Very expensive
 - Slow to encode and decode
- For more information see
 See

