K-T Extinction

Iridium Layer

3 Meter Problem

What Happened

□ What is the K-T boundary?

- K is the traditional abbreviation for the Cretaceous, and T is the abbreviation for the Tertiary.
- So the K-T boundary is the point in between the Cretaceous and Tertiary periods.
- Geologists have dated this period to about 65.5 million years ago.

- For many years, scientists believed that the K-T extinction was no great mystery: over millions of years, volcanism, climate change, and <u>other</u> events <u>gradually</u> killed off many forms of life.
- But, in the late 1970's, Walter Alvarez discovered that the KT layer was laced with unusually high amounts of the rare metal iridium.
- **This was called the Iridium Anomaly**
- They correctly hypothesized that the material was from the dusty remains of an asteroid impact.
- □ In 1980, they proposed that this impact was so large that it triggered the K-T mass extinction.

- The term iridium <u>anomaly</u> commonly refers to an unusual abundance of the chemical element iridium in a layer of rock strata at the K-T boundary.
- Iridium is extremely rare in the earth's crust because it is a <u>siderophile</u>, and therefore most of it travelled with the iron as it sank into the earth's core during planetary differentiation.
- Iridium remains abundant in most asteroids and comets.
- □ Unusually high concentration of iridium is often taken as evidence for an extraterrestrial impact event.

The crater and the asteroid were named <u>Chicxulub</u>, after a small Mayan town near the epicenter..

AJYA-FYJA-ASJKA-YONA (E14)

Cheek

Imaging from space reveals part of the 110 mile diameter ring of the crater. This shaded relief image of **Mexico's Yucatán Peninsula** shows a subtle, but unmistakable, indication of the Chicxulub impact crater. This impact was the cause of the K-T Extinction, the event 65 million years ago that marked the sudden extinction of the dinosaurs as well as the majority of life then on Earth.

- One day sixty-six million years ago, life on Earth almost came to a shattering end.
- ☐ The world that emerged after the impact was a much simpler place.
- □ When sunlight finally broke through the haze, it illuminated a hellish landscape.
 - ✓ The oceans were empty.
 - ✓ The land was covered with drifting ash.
 - ✓ The forests were charred stumps.
 - ✓ The cold gave way to extreme heat as a greenhouse effect kicked in.
- Life mostly consisted of mats of algae and growths of fungus: for years the Earth was covered with little other than ferns. Furtive, ratlike mammals lived in the gloomy understory;

One of the central mysteries of paleontology is the so-called "<u>three--meter problem</u>".

- If dinosaurs were wiped out by the Chixcsulub incident thare should be remains closer than 3 meters to the event.
- Despite assiduous searching, almost no dinosaur remains had been found in the layers three meters below the KT boundary.
- So paleontologists have argued that dinosaurs were on the way to extinction long before the asteroid struck, owing perhaps to volcanic eruptions and climate change.

BUT!

- □ In 2013 fossils were found in North Dakota that seem to be direct victims of the asteroid.
- At the K-T layer, tekites (glass globules that rained from the sky) were found, along with plants, trees, seeds, fish, mammals, and dinosaurs that shouldn't be there together.
- Scientists think they were washed into the valley by a tsunami caused by the asteroid impact.
- It would appear the whole KT event is preserved in these sediments.
- Chickxsulub seems seems directly responsible for the exctinction events at the K-T boundary!!!!.

Mind the gap! Dinosaur bone he found just below fallout from an asteroid impact (dark layers).

Mudstone

Iridium Concentration

Coal

Impact Layer (Smectite) Boundary Layer (Kaolinite)

Learning from past climatic changes

66 million years ago, sea temperatures rose rapidly as a result of environmental perturbations. The result was a mass extinction event that led to the demise of nonavian dinosaurs and the rise of mammals and birds.

Big Things From Space

Ancient 'dust-up' altered life on Earth

Impact in asteroid belt **400 million** years ago triggered major ice age that ushered in a significant increase in marine biodiversity

2nd interstellar visitor to our solar system

- An unusual object detected streaking across the sky last month was a comet that originated outside our solar system, becoming only the second observed interstellar object to cross into our solar system.
- ☐ It has been named <u>2I/Borisov</u>
- ☐ It is anywhere between 1.2 and 10 miles in diameter.
 - **1** The comet has the most hyperbolic orbit out of the thousands of known comets.

The <u>giant-impact hypothesis</u> is currently the favored scientific hypothesis for the formation of the Moon. Supporting evidence includes:

- ✓ Earth's spin and the Moon's orbit have similar orientations.
- ✓ Moon samples indicate that the Moon's surface was once molten.
- ✓ The Moon has a relatively small iron core.
- ✓ The Moon has a lower density than Earth.
- ✓ There is evidence in other star systems of similar collisions, resulting in debris disks.
- ✓ Giant collisions are consistent with the leading theories of the formation of the Solar System.
- ✓ The stable-isotope ratios of lunar and terrestrial rock are identical, implying a common origin.

 The Chesapeake Bay impact crater was formed by a bolide that impacted the eastern shore of North America about 35.5 ± 0.3 million years ago, in the late Eocene epoch.

DELAWARE

Kiptopeke

□ It is one of the best-preserved "wet-target" impact craters in the world.

- There are now more than 150 asteroids known that come nearer to the Sun than the outermost point of Earth's orbit.
- □ These range in diameter from a few meters up to about 8 kilometers.

□ There are some 2,100 such asteroids >1 km and perhaps 320,000 > 100 meters, the size that caused the the Arizona Meteor Crater. An impact by one of these larger meteors in the wrong place would be a catastrophe, but it would not threaten civilization.

However, an impact by an asteroid larger than 1-2 kilometers could degrade the global climate, leading to widespread crop failure and loss of life.

In addition there are many comets in the 1-10 kilometer class, 15 of them in short-period orbits that pass inside the Earth's orbit, and an unknown number of long-period comets.

Virtually any short-period comet among the 100 or so not currently coming near the Earth could become dangerous after a close passage by Jupiter