How Science Works, Part 2: What's Involved in Large-Scale Science

Lifetime Learning Institute March 18, 2021

Jay Labov

National Academies of Sciences, Engineering, and Medicine (Retired) jblabov@gmail.com

How Science Works, Part 1: Processes, Nature, And Limits

Lifetime Learning Institute September 24, 2020

Jay Labov

National Academies of Sciences, Engineering, and Medicine (Retired) jblabov@gmail.com

SUPPORT THIS PROJECT

Explore an interactive representation of the process of science.

search | glossary | home

UNDERSTANDING SCIENCE 101

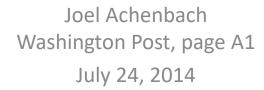
FOR TEACHERS

RESOURCE LIBRARY

Welcome! Take our site tour, find out what's new, or subscribe for updates.

A primer on the nature and process of science.

Our section of teaching resources on the nature and process of science.


A browsable archive of articles, tutorials, interactive features and more.

https://undsci.berkeley.edu/

1. What is Science?

- Science focuses exclusively on the natural world. It does not deal with supernatural explanations.
- Science is a way of learning about what is in the natural world,, e.g.,
 - how the natural world works,
 - how the natural world got to be the way it is.
 - predictions about the natural world of the future.
- Science is not simply a collection of facts; it is also a path to understanding.
- Science relies on testing ideas by figuring out what expectations are generated by an idea and making observations to find out whether those expectations hold true.
- Accepted scientific ideas are as reliable as the quality of questions asked and the level of rigor in testing those ideas.
- As new evidence is acquired and new perspectives emerge, these ideas can be, and often are revised.

Science isn't a tall stack of hard facts; it's a difficult and deeply human process that lurches toward an approximation of the truth.

2. Processes of Science: How Scientific Hypotheses are Developed

(Group Participation)

3. What constitutes scientific evidence (the nature and limits of science)?

Is there anything that science is incapable of investigating?

4. Changing Approaches to Science Education Nationally and in Virginia

How Science Works, Part 2: What's Involved in Large-Scale Science

Lifetime Learning Institute March 18, 2021

Jay Labov

National Academies of Sciences, Engineering, and Medicine (Retired) jblabov@gmail.com

General Topics We Will Consider During this Session:

Modern science is an Interconnected Enterprise:

- Relies on previous results as well as new insights
- **Education and Workforce Issues**
- Diversity and Inclusion
- Increasing globalization
- Increasingly multidisciplinary and interdisciplinary

Modern science is often very expensive.

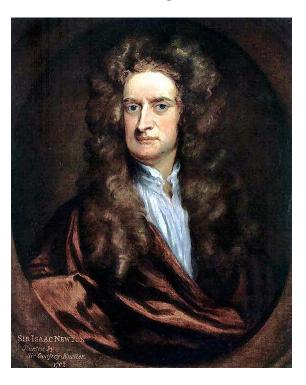
- Public and private sources of funding as both leading and trailing indicators
- Public acceptance of science to allow it to continue

Modern science has increasing levels of both internal and external regulation and quality controls.

- Differences between basic and applied research
 - Intellectual merit and broader impact requirements
- Reliability of protocols institutional review boards
- Ethical considerations, including informed consent
- Publication/distribution of findings and sources of error (both non-intentional and intentional)

Putting these principles into context:

Research, development, and testing of COVID vaccines.

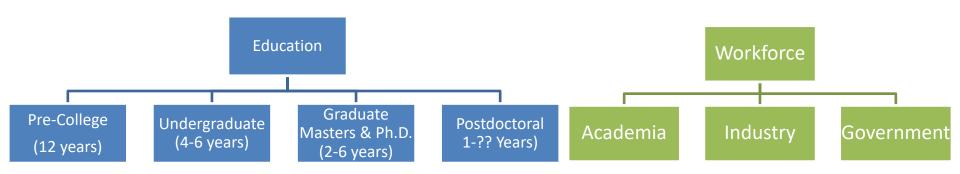

General Topics We Will Consider During this Session:

Modern science is an Interconnected Enterprise:

- Relies on previous results as well as new insights
- Education and Workforce Issues
- Diversity and Inclusion
- Increasing globalization
- Increasingly multidisciplinary and interdisciplinary

Modern science is an Interconnected Enterprise:

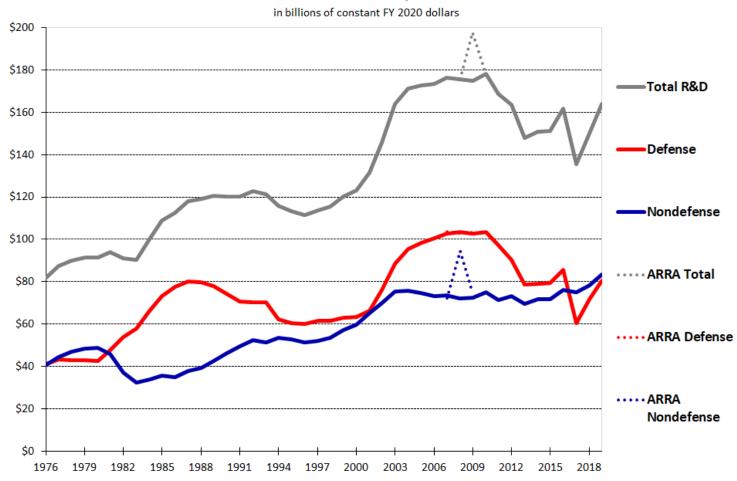
> Relies on previous results as well as new insights



"If I have seen further than others, it is by standing upon the shoulders of giants."

Sir Isaac Newton

Modern science is an Interconnected Enterprise:

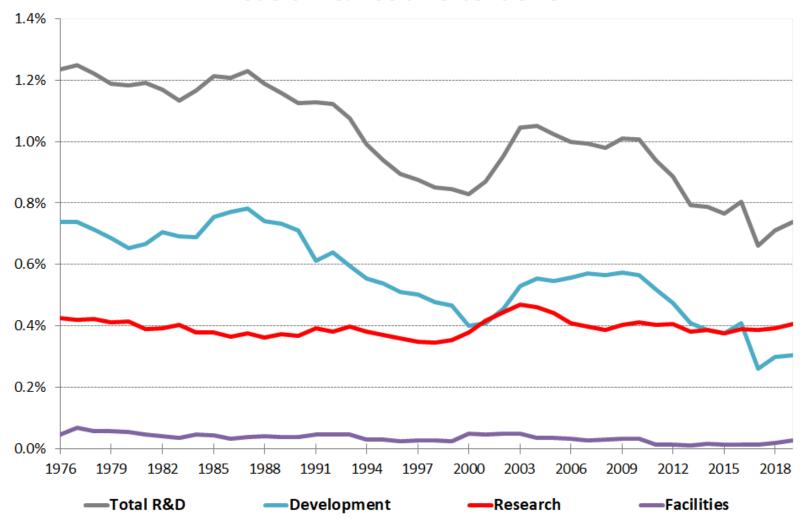

Education and Workforce Issues

- Diversity and Inclusion
- Increasing globalization
- Increasingly multidisciplinary and interdisciplinary

Modern science is often very expensive.

Trends in Federal R&D, FY 1976-2020

Note: Beginning in FY 2017, federal agencies have revised what they consider to be R&D. Late-stage development, testing, and evaluation programs, primarily within the Defense Department (6.7), are no longer counted as R&D.


Based on AAAS analyses of historical OMB and agency data, R&D includes conduct of R&D and facilities. I © AAAS 2020

Public and private sources of funding as both

Modern science is often very expensive.

Federal R&D as a Percent of GDP

Note: Beginning in FY 2017, federal agencies have revised what they consider to be R&D. Late-stage development, testing, and evaluation programs, primarily within the Defense Department, are no longer counted as R&D.

Modern science is often very expensive.

U.S. government share of basic research funding falls below 50%

Science: March. 9, 2017

For the first time in the post—World War II era, the federal government no longer funds a majority of the basic research carried out in the United States. Data from ongoing surveys by the National Science Foundation (NSF) show that federal agencies provided only 44% of the \$86 billion spent on basic research in 2015. The federal share, which topped 70% throughout the 1960s and '70s, stood at 61% recently as 2004 before falling below 50% in 2013.

- Public and private sources of funding as both leading and trailing indicators
- Public acceptance of science to allow it to continue

Source: Data check: U.S. government share of basic research funding falls below 50% | Science | AAAS (sciencemag.org)

Modern science has increasing levels of both internal and external regulation and quality controls.

- > Differences between basic and applied research
 - Intellectual merit and broader impact requirements

Intellectual Merit and Broader Impact Statements

NSF Design, Service and Manufacturing Grantees and Research Conference

NSF Standard Merit Review Criteria

Intellectual Merit	Broader Impacts
What is the potential for the proposed activity to advance knowledge and understanding within its own field or across different fields?	What is the potential for the proposed activity to benefit society or advance desired societal outcomes?

Modern science has increasing levels of both internal and external regulation and quality controls.

Reliability of protocols – institutional review boards

Phase	No. Subjects	Primary Goal
0	10-15	Optional exploratory trials to determine if agent acts as expected in human subjects
I	20-100	Dose-ranging on healthy volunteers for safety
II	50-300	Testing of drug on participants to assess efficacy and side effects
III	300-3,000+ (depending on disease studied)	Testing of drug on participants to assess efficacy, effectiveness and safety
IV	Varies by study population	Post-distribution surveillance in public

Modern science has increasing levels of both internal and external regulation and quality controls.

- Use of controls:
 - Blind vs. double-blind
- Ethical considerations, including informed consent
- Publication/distribution of findings and sources of error (both non-intentional and intentional)

December 22, 2020

Advertisement

Learn More

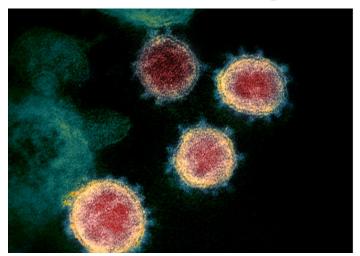
The Top Retractions of 2020

By Retraction Watch

The Retraction Watch team takes a look at the most important publishing mistakes this year.

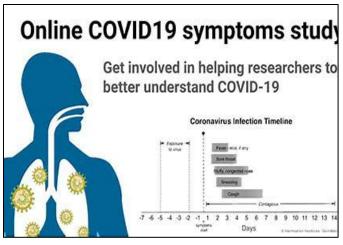
Science

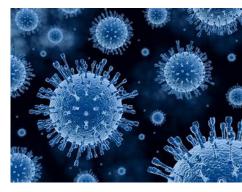
MIRAGEC/GETTY IMAGES, EDITED BY E. PETERSEN/SCIENCE


What is research misconduct? European countries can't agree

By Cathleen O'Grady | Mar. 10, 2021, 12:55 PM

In Sweden, a national code takes 44,000 words to define research misconduct and discuss scientific values. Next door, Norway's equivalent is a brisk 900 words...A new analysis of scientific integrity policies in 32 nations has found widely varying standards and definitions for research misconduct itself, despite a 2017 Europe-wide code of conduct intended to align them.


Putting these principles into context:


Research, development, and testing of COVID vaccines.

Sources of images:

New Images of Novel Coronavirus SARS-CoV-2 Now Available | NIH: National Institute of Allergy and Infectious Diseases

images of covid research - Bing images

General Topics We Will Consider During this Session:

Modern science is an Interconnected Enterprise:

- Relies on previous results as well as new insights
- **Education and Workforce Issues**
- Diversity and Inclusion
- Increasing globalization
- Increasingly multidisciplinary and interdisciplinary

Modern science is often very expensive.

- Public and private sources of funding as both leading and trailing indicators
- Public acceptance of science to allow it to continue

Modern science has increasing levels of both internal and external regulation and quality controls.

- Differences between basic and applied research
 - Intellectual merit and broader impact requirements
- Reliability of protocols institutional review boards
- Ethical considerations, including informed consent
- Publication/distribution of findings and sources of error (both non-intentional and intentional)

Putting these principles into context:

Research, development, and testing of COVID vaccines.

A Closing Thought:

"For me, I am driven by two main philosophies: know more today about the world than I knew yesterday and lessen the suffering of others. You'd be surprised how far that gets you."

Neil deGrasse Tyson

Thank you!! Questions??